

Impact of Integrated Use of Diagnostic Ultrasound Examinations in Respiratory Intensive Care Units

Submitted for Partial Fulfillment of MD Degree in Chest Diseases

Mohammed Fathi Ahmed Ahmed El Bagalaty

M.Sc Ain Shams University

Supervised by

Prof. Taher Abd El Hamid El Naggar

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Prof. Ashraf Mokhtar Madkour

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Assist Prof. Nehad Mohammed Osman

Assistant Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Assist Prof. Ashraf Adel Gomaa

Assistant Professor of chest Diseases Faculty of Medicine - Ain Shams University

Assist Prof. Ahmed Mohamed Osman

Assistant Professor of Radiology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2018

سورة التوبة الآية (١٠٥)

- Tirst and foremost, thanks to ATTAM, the most merciful and the greatest beneficent.
- I would like to express my great appreciation to Prof. Dr. Jaher Abd El Hamid El Naggar Professor of Chest Diseases, Faculty of Medicine, Ain Shams University; for his sincere effort, valuable advice and great confidence that he gave me throughout the whole work.
- I am deeply grateful to **Prof. Ashraf Mokhtar Madkour**, Faculty of Medicine, Professor of Chest Diseases, Ain Shams University; for his great directions & continuous advice all through the work. His time and effort are clear in every part of this work. Many thanks & gratitude for him.
- I would like to thank Assist Prof. Nehad Mohammed Osman, Assistant Professor of Chest Diseases, Faculty of Medicine, Ain shams University for her great help, efforts and continous advice throughout the whole work.
- I would like to express my great appreciation to Assist Prof. Ashraf Adel Gomaa, Assistant Professor of chest Diseases, Faculty of Medicine, Ain Shams University; for his sincere effort, valuable advice and great confidence that he gave me throughout the whole work.
- I am very grateful to Assist Prof. Ahmed Mohamed Osman, Assistant Professor of Radiology, Faculty of Medicine, Ain Shams University; for his great help, efforts and continous advice throughout the whole work.
- I wish to acknowledge the extraordinary help I received from Dr. Khaled Ali Abd el kader, lecturer of cardiology, Ain shams University during this work.
- Particular thanks and special appreciation are due to all the staff and colleagues of Chest Department and my Supportive family, without their help this work would not come to light.

Alohammed Fathi Ahmed Ahmed El Bagalaty

Contents

Subjects	Page
List of Abbreviations	I
• List of Tables	III
• List of Figures	V
Illustrative cases	VII
• Introduction	1
Aim of the work	5
• Review of Literature	
- Lung Ultrasound in the Critically Ill	6
- Point of Care Echocardiography in the ICU	J26
-Assessment of the inferior vena cava	38
- The hypotensive patient	41
- The Limited Abdominal Examination	46
- The Vascular Examination for DVT	47
- Assessment of diaphragmatic function	52
- The Guidance of Procedures	52
Patients & Methods	53
• Results	65
Illustrative cases	78
• Discussion	83
• Conclusion	93
• Recommendations	94
• Summary	95
• References	98
• Arabic summary	

List of Abbreviations

ALI : Acute lung injury

ARDS: Acute respiratory distress syndrome

DVT: Deep venous thrombosis

EF: Ejection fraction

ER : Emergency room

ICU: Intensive care unit

IEC: Infective endocarditis

IJV: Internal jugular vein

LA : Left atrium

LV : Left ventricle

M/AVD: Mitral/Aortic valve disease

MS: Mitral stenosis

MPG: Mean pressure gradient

MVA: Mitral valve area

OHVS: Obesity hypoventilation syndrome

OSA : Obstructive sleep apnea

PHTN: Pulmonary hypertension

PHT: Pressure half time

PLAPS: Posterolateral alveolar and/or pleural syndrome

POCUS: Point-of-care ultrasonography

PPHTN: Primary pulmonary hypertension

PVC: Pulmonary venous congestion

🕏 List of Abbreviations 🗷

RA: Right atrium

RV: Right ventricle

TB: Tuberculosis

TR : Tricuspid regurgitation

WBU: Whole-Body ultrasound

List of Tables

Table No.	Title	Page	
Table (1)	Differentiating features on lung ultrasound of	17	
	various causes of alveolar interstitial		
	syndrome.		
Table (2)	The list of nine possible ultrasound patterns 40		
	diagnosed in patients admitted for		
	undifferentiated hypotension and the		
	corresponding combination of findings		
	detected at multiorgan point-of-care		
	ultrasonographic evaluation		
Table (3)	Illustrates different profiles found during	56	
	lung ultrasound examination		
Table (4)	Diagnostic groups and Critical Ultrasound	57	
	findings of Lung ultrasound demonstrated		
Table (5)	Specific Diagnostic groups and Critical	59	
	Ultrasound findings of echocardiography		
Table (6)	Specific Diagnostic groups and Critical	61	
	Ultrasound findings of abdominal ultrasound		
	includes		
Table (7)	Criteria to Define Ultrasound-induced	63	
	Modification, Confirmation, Wrong		
	Evaluation, and Lack of Confirmation of		
	Admitting Diagnosis		
Table (8)	Patient Demographics	65	

🛢 List of Tables 🗷

Table No.	Title	Page		
Table (9)	Admitting and final diagnosis among studied	67		
	patients			
Table (10)	Distribution of Findings on Ultrasound	69		
	Examination			
Table (11)	Inferior vena cava assessment by Ultrasound			
	among studied patients			
Table (12)	The diaphragmatic mobility by ultrasound	71		
	among spontaneously breathing patients			
Table (13)	The diaphragmatic mobility by ultrasound	72		
	among mechanically ventilated patients			
Table (14)	The diaphragmatic mobility by ultrasound	72		
	among Non-invasively ventilated patients			
Table (15)	SAPS score among studied patients	72		
Table (16)	Outcome among studied patients	72		
Table (17)	The impact of ultrasound examination	73		
	among studied patients			
Table (18)	Logistic regression analysis for the relation	77		
	between number of new pathological			
	findings and ICU mortality			

List of Figures

Figure No.	No. Title	
Figure (1)	Point of care Ultrasound applications.	
Figure (2)	Areas of investigation and the BLUE-points.	
Figure (3)	Normal lung surface	
Figure (4)	Lung consolidation	
Figure (5)	Lung collapse ultrasound	
Figure (6)	Lung abscess with air inside the lesion	
Figure (7)	Interstitial syndrome and the lung rockets.	
Figure (8)	Pleural effusion	
Figure (9)	Types of pleural effusion:	
Figure (10)	Pleural effusion and nodules:	
Figure (11)	e (11) Pneumothorax and the stratosphere sign.	
Figure (12)	Pneumothorax and the lung point.	
Figure (13)	Probe location for basic echocardiographic	27
	views	
Figure (14)	Pericardial effusion	29
Figure (15)	ure (15) Hypovolemia, kissing" ventricular walls in	
	PLAX view.	
Figure (16)	Figure (16) IVC assessment	
Figure (17)	igure (17) Integrated ultrasound in hypovolemia.	
Figure (18)	e (18) Suggested algorithm for the evaluation and	
	management of a hypotensive patient.	
Figure (19)	re (19) Abdominal ultrasound findings.	

🕏 List of Figures 🗷

Figure No.	Title	
Figure (20)	Pitfall of abdominal ultrasound	
Figure (21)	Venous thrombosis	
Figure (22)	Transhepatic diaphragmatic examination.	48
Figure (23)	Examination of the diaphragm from the lateral aspect.	48
Figure (24)	Diaphragm in B- and M-mode in spontaneous breathing (left) and in forced respiration (right).	49
Figure (25)	Diaphragmatic thickness	
Figure (26)	Modification of admitting diagnosis.	

Illustrative cases

Title	Page No.
Case 1	78
Case 2	79
Case 3	80
Case 4	81
Case 5	82

Introduction

Rapid, accurate diagnosis and treatment are crucial and problematic for patients admitted to an intensive care unit (ICU). The inaccuracy of physical examination at admission to the ICU has been extensively reported. (1)

Different diagnostic imaging modalities have been developed, but most lack sensitivity, availability, and portability. Diagnostic accuracy can be increased when a brief echocardiographic study is added to extend the physical examination. (2)

Ultrasonography is an essential imaging modality in the ICU used to diagnose and guide the treatment of cardiopulmonary failure. Critical care ultrasonography requires that all image acquisition, image interpretation, and clinical applications of ultrasonography are personally performed by the critical care clinician at the point of care and that the information obtained is combined with the history, physical, and laboratory information. This allows for immediate integration of ultrasonography results with the history, physical examination, and laboratory results, yielding a powerful clinical synergy. (3)

Point Of Care Ultrasound (POCUS) is the real-time application of ultrasound on various anatomic parts or body organs for diagnostic or procedural purposes. (4)

POCUS in the hands of the clinician is a safe, rapid, non-invasive diagnostic technique, suitable for use at the bedside, that can help physicians to solve time-dependent focused clinical puzzles and greatly accelerate the differential diagnostic procedure. It is now utilized by health care professionals from nearly all specialties. (5)

use of POCUS can immediately narrow differential diagnoses by building clinical on the information revealed by the traditional physical examination and refining clinical decision making for further management. (5)

Using POCUS to guide procedures has been found to reduce procedure-related complications, along with costs and lengths of stay associated with these complications. Despite several undisputed advantages of POCUS, barriers to implementation must be considered. ⁽⁵⁾

Most importantly, the utility of POCUS depends on the experience and skills of the operator, which are affected by the availability of training and the cost of ultrasound devices. Additional system barriers include availability of templates for documentation, electronic storage for image archiving, and policies and procedures for quality assurance and billing. Integration of POCUS into the practice of internal medicine and ICU is an inevitable change that will empower internists and intensivists to improve the care of their patients at the bedside.⁽⁵⁾

The role of the point of care ultrasonographer is not to replace expert level consultation by radiology or cardiology services, but to recognize the need for these services when the critical care team determines that consultative service is required. (3)

The standard **Point of care Whole-Body ultrasound** (**WBU**) examination includes thoracic, cardiac, limited abdominal, and an evaluation for DVT. Other elements of ultrasonography are used when clinically indicated *Figure(1)*. (3)

Laursen et al used a point-of-care multiorgan approach to guide management of patients with respiratory symptoms and compared this with standard of care to see which approach led to a more accurate diagnosis. They found that the combination of cardiac, thoracic, and diagnostic vascular ultrasonography led to accurate diagnosis in their patients. (6)

In addition, using this WBU approach leads to a decrease in overall utilization of other testing and therefore a decrease in cost. (7)

NO particular order is recommended for the examination because this may be driven by the clinical presentation. For example, if the patient presents with acute respiratory failure, there is logic to starting with the lungs. Conversely, with shock presentation, the cardiac examination may be first. (3)

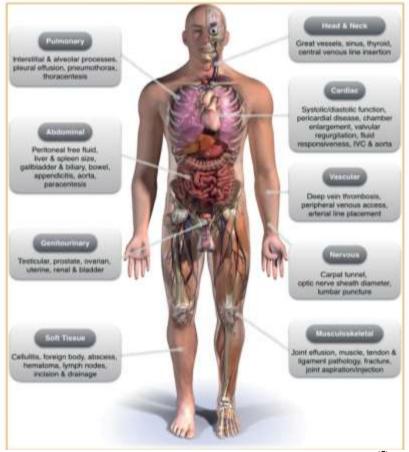


Figure (1): Point of care Ultrasound applications. (5)