

Utility of C-Arm CT in Detection of Hepatocellular Carcinoma During Trans Arterial Chemoembolization

Thesis

Submitted For Fulfillment of the M.Sc. Degree in Radiodiagnosis

By

Nourhan Mahmoud Elsayed Morsy

M.B., B.Ch. Alexandria University

Supervised by

Dr. Mohamed Shaker Ghazy

Prof. of Radiodiagnosis Faculty of Medicine Faculty of Medicine - Ain Shams University

Dr.Ahmed Hassan Soliman

Lecturer of Radio diagnosis Faculty of medicine Faculty of Medicine - Ain Shams University

Dr. Mohamed Hosni Kamel Abdelmaksoud

Lecturer of Intervention Radiology Theodor Bilharz Research Institute

Faculty of Medicine
Ain Shams University
2018

Acknowledgment

First and foremost, I would like to give thanks to **ALLAH** the almighty.

I wish to express my deep gratitude to **Prof.**Mohamed Shaker Ghazy, Professor of Diagnostic Radiology, Faculty of Medicine, Ain Shams University for accepting the idea of this work, his efforts and encouragement.

I also extend my thanks and appreciation to Dr. Ahmed Hassan Soliman, Lecturer of Diagnostic Radiology, Faculty of Medicine, Ain Shams University for his valuable guidance, constructive criticism and great help in supervising this work.

My profound thanks and sincere appreciation goes to **Dr. Mohamed Hosni Kamel Abdelmaksoud,** Lecturer of intervention radiology, Theodor Bilharz Research Institute, as regards his great encouragement guidance and unlimited kind support.

سورة البقرة الآية: ٣٢

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	9
Introduction	1
Aim of the Work	13
Review of Literature	
Anatomy of the Liver	14
 Pathological Characteristics of Hepatocell Carcinoma 	
• Cone Beam Computed Tomography (CBCT)	27
Patients and Methods	31
Results	39
Illustrative Cases	57
Discussion	68
Summary	73
References	75
Arabic Summary	

List of Tables

Table No.	Title Pag	je No.
Table (1):	Demographic data of the studied cases	33
Table (2):	Segmental location of the tumors seen in	
14510 (2).	the pre imaging CT/MRI results among the	
	studied cases.	
Table (3):	Segmental location of the tumor seen in the	
14210 (0)1	DSA results among the studied cases	
Table (4):	Segmental location of the tumor seen in the	
14216 (1)	Cone beam CT results among the studied	
	cases	
Table (5):	Additional tumor detected in comparison to	
20020 (0)	pre imaging (CT/MRI).	
Table (6):	Comparison between results by pre-	
_0,0_0	imaging (CT/MRI) and results by DSA	
	among the studied cases.	
Table (7):	Predictive value of DSA taking pre imaging	
	(CT/MRI) as a gold standard	-
Table (8):	Comparison between results by pre-	
_ = = = = = = = = = = = = = = = = = = =	imaging (CT/MRI) and results by cone	
	beam CT among the studied cases	
Table (9):	Predictive value of cone beam CT taking	
_ = = = = = = = = = = = = = = = = = = =	pre imaging (CT/MRI) as a gold standard	•
Table (10):	Comparison between DSA and CBCT	
(= 0/0	regarding tumor feeder detection.	
Table (11):	Detectability of Tumor-feeding vessels per	
(-/-	modality.	

List of Figures

Fig. No.	Title	Page No.
D: (4)		
Figure (1):	Segmental anatomy according Couinaud	
Figure (2):	The conventional Couinaud scheme.	
Figure (3):	Conventional arterial anatomy of	the
	celiac artery	
Figure (4):	Anatomic variations in the ce	
E' (F)	artery	
Figure (5):	Right hepatic artery (solid arre	
	originating at the superior mesente artery (tip of arrow)	
Figure (6):	Run of the right hepatic artery	
Figure (7):	Left hepatic artery (LHA) originating	
	the left gastricartery (LGA)	
Figure (8):	Arrangement of the hepatic ven	
	territories	24
Figure (9):	Normal anatomy of portal vein	
Figure (10):	CBCT imaging is based on the rotat	
	of a C-arm equipped with a flat pa	
	detector (left image) around patient. 2D projections are acqui	
	(right image) and reconstructed	
	generate a 3D volumetric data set	
Figure (11):	Age	
Figure (12):	Sex	34
Figure (13):	Pre imaging	
Figure (14):	Pre imaging (CT/MRI)	
Figure (15):	DSA.	
_	Cone beam CT.	
Figure (17):	Comparison between results by	-
	imaging (CT/MRI) and results by D among the studied cases	
Figure (18):	Predictive value of DSA taking	
118410 (10)	imaging (CT/MRI) as a gold standard	_

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (19):	Comparison between results by imaging (CT/MRI) and results by c	one
Figure (20):	beam CT among the studied cases Predictive value of cone beam taking pre imaging (CT/MRI) as a g standard	CT gold
Figure (21):	Comparison between DSA and CE regarding tumor feeder detection	BCT
Figure (22):	Detectability of Tumor-feeding vess per modality	
Figure (23):	Preimaging MRI: lesion at segment VI, other at segment V/VI (lesi represented by red arrows)	ons
Figure (24):	DSA: lesion at segment VI, other segment V/VI, additional lesion segment II, single feeder for e tumor (red arrows for lesions, gr	at at ach
Figure (25):	arrows for feeder vessels)	at at for for eder
Figure (26):	wessels)	VI
Figure (27):	(Red arrows for lesions)	VI, nor. ows
	for feeder vessels)	60

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (28):	CBCT 4 lesions at segment VI, lesion at segment II, single feed vessel for each tumor. (Red arrows	eing
	lesions, green arrows for feeder vesse	
Figure (29):	Preimaging CT: lesion at segment V	
E: (20).	(Red arrows for lesions)	
Figure (30):	DSA: lesion at segment VIII wit tumor feeders. (Red arrows for lesi	
	green arrows for feeder vessels)	•
Figure (31):	CBCT: segment VIII lesion with tumor feeding vessels and addition tumor at segment VII. (Red arrows	h 3 onal
	lesions, black arrows for feeder vesse	
Figure (32):	Pre imaging CT: lesion at segn	
8 - (- /	VII.(Red arrows for lesions)	
Figure (33):	DSA: lesion at segment VI with	
	tumor feeders. (Red arrows for lesi	,
Figure (34):	green arrows for feeder vessels) CBCT: lesion at segment VII, sit tumor feeders. (Red arrows for lesi	ngle
	green arrows for feeder vessels)	
Figure (35):	Preimaging CT: large lesion at segn	
F' . (90)	VII/VIII. (Red arrows for lesion)	
Figure (36):	DSA: multifocal lesions at right left lobes, 3tumor feeders for segm	
Figure (37):	VII/VIII lesion, one feeder for et tumor. CBCT: Multifocal lesions, 3 tu feeders for segment VII/VIII, si feeder for each tumor. (Red arrows)	each 66 mor ngle
	lesions, green arrows for feeder vesse	ls)67

List of Abbreviations

Abb.	Full term
2D	Two dimensional
	Three-dimensional
	Cone beam computed tomography
<i>CHA</i>	Common hepatic artery
<i>CT</i>	Computed tomography
DSA	Digital subtraction angiography
FOV	Field of view
<i>GDA</i>	Gastroduodenal artery
<i>HCC</i>	$He pato cellular\ carcinoma$
<i>LGA</i>	Leftgastric artery
<i>MDCT</i>	Multidetector CT
<i>MIP</i>	Maximum intensity projection
<i>MR</i>	Magnetic resonance
	Magnetic resonance imaging
	Proper hepatic artery
	Right hepatic artery
	Splenic artery
<i>TACE</i>	Transarterial chemoembolization

Introduction

(epatocellular carcinoma (HCC) is the primary liver cancer, which is considered the sixth most common cancer in the world and the second leading cause of cancer related death. Transarterial chemoembolization (TACE) is the officially recommended therapeutic option for many patients. Hepatocellular carcinoma is unique among malignancies in having tumor characteristics on cross-sectional multiphase contrast CT or MR imaging that allow for a highly accurate diagnosis of HCC without an invasive biopsy (Manini et al., 2014).

The diagnosis is based on the qualitative or visual appreciation of differences in attenuation on CT and signal intensities on MRI of the HCC with respect to surrounding liver parenchyma (Leoni et al., 2010).

Typical HCC demonstrates arterial enhancement followed by washout at computed tomography (CT) (Parente et al., 2014). By magnetic resonance (MR) imaging HCC usually appears as a hypo intense nodule at T1-WI comparing to the surrounding parenchyma, On T2-WI it shows a mild hyper intense signal in post contrast imaging, enhancement is usually arterial with rapid "washout," becoming hypointense to the remainder of the liver with restricted diffusion.(Bartolozzi et al., 2011).

One of the most common reasons for early recurrence after treatment is the inability to identify all lesions including the small or occult tumors prior to treatment. Therefore, detection of all tumor nodules, including the smaller HCCs (<3 cm), is essential in achieving best treatment results (*Deschamps* et al., 2010).

Unfortunately, angiography frequently cannot detect small HCC lesions. In addition, conventional triphasic contrast enhanced computed tomography (CT) and magnetic resonance imaging (MRI) are less sensitive in detecting small lesions (Deschamps et al., 2010).

Another area of controversy is the optimal management of patients in whom CT or MRI detects a nodule with some but not all the hallmark features of HCC. The differential diagnosis for such nodules includes HCC, non-HCC malignancy, and non malignant entities (Bruix and Sherman, 2011).

Detection rates of HCCs may depend on the tumor size, C-arm CBCT protocol. Generally, C-arm CBCT shows additional HCCs that are not evident on CT, MRI, and angiography, so the sensitivity of HCC detection is increased through the use of CBCT. But, non-tumorous lesions mimicking HCCs are frequently seen on C-arm CBCT, resulting in reduced specificity (Higashihara et al., 2012).

C-arm hepatic artriography the most common technique for intraprocedural HCC detection and is recommended as part of the Cardiovascular and Interventional Radiological Society of Europe/ Society of Interventional Radiology protocol guidelines for selective trans arterial chemoembolization (TACE) due to it provides substantially more information than digital subtraction angiography (DSA) because it delineates the exact location of a target tumor in relation with the surrounding structures, and direct injection of contrast material into the hepatic artery allows easy and accurate tracing of the tumor feeders on the CT images (Higashihara et al., 2012).

AIM OF THE WORK

The objective of this study is to evaluate the sensitivity of cone beam computed tomography (CBCT) in detecting hepatocellular carcinoma (HCC) tumors and their feeding vessels during transarterial chemoembolization (TACE).

Chapter 1

ANATOMY OF THE LIVER

Gross Anatomy of the Liver

I) <u>Hepatic lobes and segmental anatomy of</u> <u>the liver:</u>

A- Anatomical lobes of the liver:

1. Right lobe:

The right lobe of the liver is the largest in size and contributes to all surfaces; it exceeds the left lobe by a ratio of 6:1. It occupies the right hypochondrium and is bordered on its upper surface by the falciform ligament, on its posterior surface by the left sagittal fossa, and in front by umbilical notch. It's inferior and posterior surfaces are marked by three fossae; the porta hepatis, the gall bladder fossa, and the inferior vena cava. A congenital variant, Riedel's lobe, can sometimes be seen as an anterior projection of the liver (*Standring*, 2008).

2. Left lobe:

The left lobe of the liver is the smaller of the two main lobes. It lies in the epigastric and left hypochondrium regions. Its upper surface is convex. It's under surface includes the gastric impression and omental tuberosity. The medial segment

of the left lobe is oblong and situated on the postero-inferior surface of the left lobe. In front it is bounded by the anterior margin of the liver, behind by the porta hepatis, on the right by the fossa for the gall bladder, and on the left by the fossa for the umbilical vein (*Standring*, 2008).

3. Caudate lobe:

The caudate lobe is a small lobe visible on the posterior surface. It is bounded on the left by the fissure for ligamentum venosum, below by the porta hepatis, on the right by the groove for the inferior vena cava. Above it continues into the superior surface. Below and to right, it is connected to the right lobe by a narrow caudate process. In gross anatomical descriptions this lobe is said to arise from the right lobe, but it is functionally separate (*Standring*, 2008).

4. Quadrate lobe:

The quadrate lobe is only visible from the inferior surface, it appears somewhat rectangular. It is bounded on the right by the fossa for the gall bladder, on the left by the fissure for ligamentum teres, in front by the inferior border, and posteriorly by the porta hepatis. In gross anatomical description it is said to be a lobe arising from the right lobe, however, it is functionally related to the left lobe (*Standring*, 2008).