

VALUE ENGINEERING APPLICATION IN RESTORATION AND REHABILITATION OF HERITAGE BUILDINGS

By

Essam Mesbah Abou-Elfetouh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

VALUE ENGINEERING APPLICATION IN RESTORATION AND REHABILITATION OF HERITAGE BUILDINGS

By

Eng. Essam Mesbah Abou-Elfetouh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Mohamed Mahdy Marzouk

Professor of Construction Engineering and Management Structural Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

VALUE ENGINEERING APPLICATION IN RESTORATION AND REHABILITATION OF HERITAGE BUILDINGS

Essam Mesbah Abou-Elfetouh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

Approved by the Examining Committee:

Prof. Mohamed Mahdy Marzouk
Professor of Construction Engineering and Management – Structural Department
Cairo University - Thesis Main Advisor
Prof. Sohair Zaki Hawass
Professor of Architecture and Urban Design – Department of Architecture at Faculty of
Engineering – Cairo University – Internal Examiner
Prof. Emad Elsaid Elbeltagi
Professor of Construction Engineering and Management – Structural Department
Mansoura University – External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA – EGYPT

2018

Engineer: Essam Mesbah Abou-Elfetouh

Date of Birth: 4/8/1963 Nationality: Egyptian

E-mail: essam_data_center@yahoo.com

Phone: 01005078684

Address: Bld.1–Elbostan Compound-6th of October, Giza

Registration Date: 1/3/2013
Awarding Date: //2018
Degree: Master of Science
Department: Structural Engineering

Supervisors: Prof. Mohamed Mahdy Marzouk

Examine: Prof. Mohamed Mahdy Marzouk - Cairo University (Thesis Main Advisor)

Prof. Soheir Zaki Hawas - Cairo University (Internal Examiner)
Prof. Prof. Emad Elsaid Elbeltagi - Mansoura University (External Examiner)

Title of Thesis: Value Engineering Application in Restoration and Rehabilitation of Heritage Buildings

Key Words: Heritage Buildings, Rehabilitation, Value Engineering, Restoration

Techniques, Multi-Criteria Decision Making

Summary:

Heritage Buildings perform a pivotal and very important role in the history of the nation, culture and express the wealth of it. In order to expand life and increase the strength of heritage buildings, conservation is a very important process for future generations to keep knowledge about how humans lived in the past ages. Conservation of heritage buildings keep values of the countries cultural, Moreover, conservation enables heritage buildings to be given a second life and a profitable investment. Conservation of Heritage Building projects is considered the complex process that is associated with many factors that affect the decision of selecting restoration technique. A structured questionnaire was distributed among the experts in the field of Heritage Building conservation projects in order to determine the factors affecting the decision of restoration technique. A statistical analysis was carried out on the collected questionnaire to reach the importance and weights of each factor. In Heritage Building conservation projects, Value engineering (VE) is considered a fertile area for the implementation of multi-criteria decision making (MCDM) due to the existence of different alternative combinations that are studied by the decision maker to reach a satisfactory restoration technique. The research presents the development of Heritage Building Restoration Model (HBRM) that uses MCDM technique which assists Heritage Building owners to decide on the best restoration technique in order to conserve and adapt the reuse of their Heritage Buildings. The model implements Simo's procedure to determine the importance and weights of the factors that influence the decision of restoration and rehabilitation of Heritage Buildings. The Weighted-Sum decision making technique is applied on a case-study of Heritage Building conservation project in order to reach the final preferences, rank the alternative restoration techniques and consequently come-up with the most appropriate restoration technique. Sensitivity analysis is performed to determine the most critical factors of the key-list. Additionally, several scenarios are investigated to verify that the most important factor of the key-list does not necessarily be the most critical factor. A reallife Heritage Building conservation project was then considered to verify the developed HBRM model. The final decision of HBRM is tested against the experts' decision in that project. It was concluded that the final decision obtained from the proposed HBRM matches the one that was implemented in the real project.

Acknowledgments

After thanking God for giving me the strength and ability to complete this work, I would like to acknowledge with sincere thanks to my supervisor **Prof. Mohamed Mahdy Marzouk**, Professor of Construction Engineering and Management for his continues support of my M.Sc. study and research, his patience, motivation, extraordinary kindness, valuable supervision, expertise guidance. There are no thanking words that can express my appreciation for him.

Thanks also for all the interviewees, for their valuable time and for providing me with the information and the data required to prepare this thesis.

Finally, I would like to thank all my family and my friends for their wholehearted support and encouragement that I received from the early beginning.

Essam Mesbah Abou-Elfetouh 18/1/2018

Table of Contents

Acknowledgements	i
Table of Contents	ii
List of Figures	v
List of Tables	vii
Abstract	ix
Chapter 1	1
Introduction	1
1.1 General	1
1.2 Problem Statement	1
1.3 Research Objectives	2
1.4 Research Scope	2
1.5 Research Methodology	2
1.6 Thesis Organization	4
Chapter 2	5
Literature Review	5
2.1 General	5
2.2 Restoration and Rehabilitation of Heritage Buildings: An Overview	5
2.2.1 Importance of Restoration and rehabilitation of heritage buildings	5
2.2.2 Principals of Restoration and Rehabilitation of Heritage Buildings	6
2.2.3 Restoration and Rehabilitation of Heritage Buildings Applications	7
2.3 Economic benefits of heritage conservation	7
2.3.1 Creating jobs	8
2.3.2 Increasing household income	8
2.3.3 Creating more Business Opportunities	8
2.3.4 Enhancement of regional development	8
2.3.5 Adding to property value	9
2.4 Value Engineering: An Overview	9
2.4.1 Value Engineering Terminology	9
2.4.2 Value Engineering History and Development	10
2.4.3 VE Objectives	11
2.4.4 Applicability of VE	12
2.4.5 Value Engineering Methodology	13
2.4.6 Value Engineering Process	13

2.4.7 Value Engineering Applications in construction	14
2.5.1 Analytical Hierarchy Program (AHP)	17
2.5.2 Analytical Network Program (ANP)	17
2.5.3 Simple Additive Weighting (SAW)	18
2.5.4 ELECTRE	18
2.5.5 TOPSIS	19
2.5.6 Data Envelopment Analysis	20
2.5.7 Weighted sum model (WSM)	21
2.6 Summary	21
Chapter 3	22
Questionnaire Survey and Statistical Analysis	22
3.1 General	22
3.2 Factors Identification	22
3.3 Data Collection of the Restoration Factors	22
3.3.1 Demography of Respondents Error! Bookm	ark not defined.
3.3.2 Sample Design	25
3.4 Respondents classification analysis	26
3.5 Factors' Reliability	
3.6 Factors Ranking According to Frequency Index	29
3.6.1 Frequency Index for Owner's Respondents	30
3.6.2 Frequency Index for Contractors Respondents	
3.6.3 Frequency Index for Consultants' Respondents	31
3.6.4 Comparison between All Respondents	32
3.7 Factors' Importance	32
3.8 Analysis of Data Using Statistical Test	36
3.8.1 Frequency of the Factors	36
3.9 Summary	
Chapter 4	
Heritage Building Restoration Model (HBRM)	40
4.1 General	40
4.2 Determining Factors' Weights	33
4.3 Alternatives Techniques Identification	
4.3.1 Restoration Using Carbon Fiber (C.F)	
4.3.2 Restoration Using Steel Beams (St.B.)	
4.3.3 Restoration Using Steel Plates (St.Pl.)	
134 Restoration Using Reinforced Concrete (R.C.)	11

4.3.5 Restoration Using new statically system and keeping the facade	44
4.4 Weighted Sum Model – Ranking Technique	46
4.5 Acquiring Values of Factors	46
4.6 Ranking of alternatives	47
4.7 Case study verification	50
4.8 Summary	54
Chapter 5	55
Sensitivity Analysis	55
5.1 General	55
5.2 Absolute and Relative Approaches	55
5.3 Determining Most Critical Factor	56
5.3.1 Processing Most Critical Factor – Absolute Terms	57
5.3.2 Processing Most Critical Factor – Relative Terms	58
5.3.3 Criticality degrees and sensitivity coefficients	60
5.4Monitoring Change in Weights of Factors	60
5.5 Summary	70
Chapter 6	71
Conclusions and Recommendations	71
6.1 Summary and Conclusion	71
6.2 Research contributions	71
6.3 Research Recommendations	72
6.4 Recommendations for Future Research	72
REFERENCES	73
APPENDICES	84
Appendix A: Validity of a questionnaire	85
Appendix B: Questionnaire Survey - The identification of the most important factors	88
Annendix C: OUESTIONER FEEDRACK	91

List of Figures

Chapter 1
Figure 1.1: Methodology Flowchart
Figure 2.1: Need for Restoration
Figure 2.2: Definition of Value Engineering
Figure 2.3: Potential Savings from VE Applications
Figure 2.4: Stages of Value Engineering
Figure 2.5: Value engineering steps
Figure 2.6: The general model of decision-making process
Chapter 3
Figure 3.1: Respondent's Categorization According Profession
Figure 3.2: Respondent's Categorization According Years of Experience
Figure 3.3: Respondent's Categorization According Project Characteristics
Figure 3.4: Respondent's Categorization According Previous Experience in HBS Project28
Figure 3. 5: FI Values for Owner Representatives RespondentsError! Bookmark not defined.
Figure 3. 6: FI Values for Contractor Respondents Error! Bookmark not defined.
Figure 3. 7: FI Values for Designer Respondents Error! Bookmark not defined.
Figure 3. 8: FI Values for All Respondents Error! Bookmark not defined.
Figure 3. 9: Respondent's Importance Factor
Chapter 4
Figure 4. 1: Carbon Fiber Technique for Solid Slabs
Figure 4. 2: Egyptian Museum
Figure 4. 3 Arched Beam Before Restoration
Figure 4. 4: Carbon Fiber Technique for Arched Beams
Figure 4.5: Steel Beams in National Bank of Egypt in Fayoum

Figure	4. 6: Steel Plates in National Bank of Egypt in Fayoum	44
Figure	4. 7 : Restoration Using Reinforced Concrete at Damanhour Creative Center	44
Figure	4. 8 : Moski Branch of National	.45
Figure	4. 9: Moski Branch of National Bank FacedInterior Old Slabs	45
Figure	4. 10: Old and New concrete Slab	45

List of Tables

Chapter 2

Table 2.1: Regional Development Factors and the Comparison between Rel New Construction Projects	
Chapter 3	
Table 3.1: Preliminary Factors Affecting Restoration Technique	23
Table 3.2: Important Factors Affecting Restoration Techniques	24
Table 3.3: Frequency of Importance for Each Factor	29
Table 3.4: FI for Owner Representatives' Respondents	30
Table 3.5: FI for Contractors' Respondents	31
Table 3.6: FI for the Designers' Respondents	31
Table 3. 7: FI for All Respondents	32
Table 3.8: Comparison of FI between Owners, Designers and Contractors Re	espondents
Error! Bookn	nark not defined.
Table 3. 9: Ranking Factors According to Owners, Designers, And Contract	_
Error! Bookn	nark not defined.
Table 3. 10: Importance Factors affecting Restoration of Heritage Buildings	33
Table 3. 11: Feedback of Respondents According to Their Years of Experien	nce37
Table 3. 12: Relationship between respondents' previous experience with Fin	rm Project and
factors importance	38
Chapter 4	
Table 4.1: Resultant of the questionnaire responses	34
Table 4.2: Determining Relative Weights of Factors	35
Table 4.3: Alternatives Techniques Identification	41
Chapter 5	
Table 5.1: All Possible δk,i,j Values (Absolute Change in Factors' Weights)	57
Table 5.2: All Possible δ/k,i,j Values (Relative Change in Factors' Weights)	59
Table 5.3: Criticality and Sensitivity Coefficients	60

Table 5.4: Weights of factors – Scenario I Error! Bookmark not defined
Table 5.5: Final Preferences and Ranking- Scenario I Error! Bookmark not defined
Γable 5.6: Ranks of Corresponding Pair of alternatives – Scenario I61
Table 5.7: Weights of Factors – Scenario II61
Table 5.8: Final Preferences and Ranking- Scenario II
Table 5.9 : All Possible δk,i,j Values (Absolute Change in Factors' Weights) - Scenario II .62
Table 5. 10: All possible $\delta'_{k,i,j}$ Values (Relative Change in Factors' Weights) - Scenario II63
Γable 5. 11: Ranks of Corresponding Pair of alternatives – Scenario II 64
Table 5. 12: Weights of Factors – Scenario III64
Γable 5. 13: Final Preferences and Ranking- Scenario III. 65
Table 5. 14: All Possible δk,i,j Values (Absolute Change in Factors' Weights) – Scenario III
Table 5. 15: All Possible δ/k,i,j Values (Relative Change in Factors' Weights) – Scenario III
66
Γable 5. 16: Ranks of Corresponding Pair of Alternatives – Scenario III67
Γable 5. 17: Weights of factors – Scenario IV 67
Γable 5. 18: Final Preferences and ranking- Scenario IV68
Table 5. 19: All possible δk,i,j values (absolute change in factors' weights) - Scenario IV68
Table 5. 20: All possible δ/k,i,j values (relative change in factors' weights) - Scenario IV69
Γable 5. 21: Ranks of Corresponding Pair of Alternatives – Scenario IV70
Γable 5. 22: Summary of Scenarios70

Abstract

Heritage Buildings perform a pivotal and very important role in the history of the nation, culture and express the wealth of it. In order to expand life and increase the strength of heritage buildings, conservation is a very important process for future generations to keep knowledge about how humans lived in the past ages. Conservation of heritage buildings keep values of the countries cultural, Moreover, conservation enables heritage buildings to be given a second life and a profitable investment. Conservation of Heritage Building projects is considered the complex process that is associated with many factors that affect the decision of selecting restoration technique. A structured questionnaire was distributed among the experts in the field of Heritage Building conservation projects in order to determine the factors affecting the decision of restoration technique. A statistical analysis was carried out on the collected questionnaire to reach the importance and weights of each factor.

In Heritage Building conservation projects, Value engineering (VE) is considered a fertile area for the implementation of multi-criteria decision making (MCDM) due to the existence of different alternative combinations that are studied by the decision maker to reach a satisfactory restoration technique. The research presents the development of Heritage Building Restoration Model (HBRM) that uses MCDM technique which assists Heritage Building owners to decide on the best restoration technique in order to conserve and adapt the reuse of their Heritage Buildings. The model implements Simo's procedure to determine the importance and weights of the factors that influence the decision of restoration and rehabilitation of Heritage Buildings. The Weighted-Sum decision making technique is applied on a case-study of Heritage Building conservation project in order to reach the final preferences, rank the alternative restoration techniques and consequently come-up with the most appropriate restoration technique.

Sensitivity analysis is performed to determine the most critical factors of the key-list. Additionally, several scenarios are investigated to verify that the most important factor of the key-list does not necessarily be the most critical factor.

A real-life Heritage Building conservation project was then considered to verify the developed HBRM model. The final decision of HBRM is tested against the experts' decision in that project. It was concluded that the final decision obtained from the proposed HBRM matches the one that was implemented in the real project.

Chapter 1

Introduction

1.1 General

Egypt has a very rich historical background which is evident from various buildings, pyramids, temples, landscapes, objects of the historic era. Fragrant narrates the history of the past more than a century but negligence is the master of the situation. In any country heritage buildings and monuments are the mute symbols of the country great history [Meli et. al, 2007] [1]. These buildings were designed with many different materials, structure and construction systems. The successive rapid development in modern life puts a pressure on the owners of these buildings as there is a need to reach best usage of the interior spaces which resulted in the conversion of the interior building designs from historical buildings to modern internal designs taking into consideration the historic authentic of the building and façade. The pressure appears in the restoration cost in the light of the economic return of the project.

Restoration of Heritage Buildings is a complex and very expensive process which consists of several steps; survey, diagnosis, safety evaluation, the choice of factors and techniques of interventions, and finally the controls .The most important one is to detect the state of the building according to its historical state which was built in the past and restores it back to its first state taking into consideration its heritage value. On the other side, value engineering is a well- organized process aimed to reduce the lifecycle cost as much as possible while achieving the best function. Because of the many factors affect the selection decision of the most suitable restoration technique, So Value engineering (VE) is considered a rich area for the implementation of Multi-Criteria Decision Making Techniques.

1.2 Problem Statement

Egypt has several heritage buildings that are distributed through the history passing through different eras, these building and monuments represent the religious, military, political or economic powers of the past. The current function and use of these Heritage buildings are mainly determined by their current state. Heritage Buildings that have no use or maintenance are deteriorating at a larger rate than the other buildings that are under operation which have greater chances of regular maintenance (Steinberg, 1996) [2]. It's very difficult to restore a heritage building to its original condition, especially if that building was left over the time without preservation or maintenance through its past life. The fact that restoration and rehabilitation of heritage buildings while preserving architectural character archaeological are very challenging due to the difficulty to identify the most suitable restoration technique as well as the extent of new technologies, modern space programs and the investment in heritage buildings.

This fact emphasizes the need to optimize the restoration technique using value engineering concept, which could realize better usage of the heritage building and life extension with minimum restoration cost under the consideration of different factors affecting decision making.

1.3 Research Objectives

The main objective of this research is to provide a methodology for selecting the most suitable restoration technique while taking into consideration the different factors affecting the restoration of heritage buildings (HB), implementing value engineering (VE) and multi-criteria decision making (MCDM) technique to assist HB owners to decide on the best restoration technique. To achieve this main objective, the following sub-objectives are fulfilled:

- Defining the importance, objectives, principals, the different affecting factors, economic benefits of HB restoration and the application of VE and MCDM in projects.
- Getting the relative importance of the factors affecting the final decision making of selecting the most suitable restoration technique of HB.
- Developing a heritage building restoration model (HBRM) incorporating multi-criteria decision making tool to assist in ranking the different restoration techniques is.
- Testing and verifying the model (HBRM).
- Identifying the most critical factor.

1.4 Research Scope

The research scope is to study the alternatives and the implementation of Value Engineering in deciding on the most appropriate restoration technique that can be used in restoration and rehabilitation of HB projects using MCDM. This study as well can assist the owners, experts to decide on the most suitable restoration technique and evaluate their previous projects and restoration decisions that were taken before. However, the developed model is focusing on the most suitable alternative technique that can be used in restoration and rehabilitation of heritage building's structural elements.

1.5 Research Methodology

The methodology of this research is comprised of the following steps:

- A literature review on the restoration techniques of heritage buildings is carried out in order to develop a list of factors that should be considered in the decision making.
- A questionnaire of the identified factors is distributed among the experts in the field of Restoration of Heritage Buildings to determine the relative importance of each factor.
- A statistical analysis of the questionnaire results is carried out to determine the frequency index (FI) for the identified factors.
- Determining the weights for the different factors using Simos' procedure.