

Assessment of Diaphragmatic Mobility by Chest Ultrasound in Relation to the Body Mass Index and Spirometric Parameters

Thesis

Submitted for Partial Fulfillment of Master Degree in **Chest Diseases**

By

Hossam Hassan Sayd

M.B.B.CH. Ain Shams University

Supervised By

Prof. Adel Mohamed Saeed

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Dr. Hieba Gamal Ezzelregal

Lecturer of Chest Diseases
Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof.** Adel Mohamed Saced, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Hieba Gamal Ezzelregal**, Lecturer of Chest Diseases, Faculty of

Medicine, Ain Shams University, for her sincere

efforts, fruitful encouragement.

I am deeply thankful to my parents, for their great help, outstanding support, active participation and guidance.

Hossam Hassan Sayd

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	11
Introduction	1 -
Aim of the Work	3
Review of Literature	
Diaphragm	4
Spirometry	25
■ BMI	32
■ The Effects of Body Composition on Spirometr Normal Diaphragmatic Motion	
Spirometry and BMI	36
Patients and Methods	39
Results	51
Discussion	72
Summary and Conclusion	83
Recommendations	87
References	88
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Classification of severity of limitation	
Table (2):	The mean age, sex and BMI of the population:	
Table (3):	Spirometric indices of the population:	
Table (4):	Sonographic diaphragmatic indices	53
Table (5):	Comparison between obese and not as regard age and sex	
Table (6):	Comparison between male and fer regard age and BMI	
Table (7):	Correlations between BMI in all, ob non obese persons with Age, spir indicies, ultrasonographic diaphra measurements	ometric agmatic
Table (8):	Relation between BMI in obese and degree of restrictive pattern	•
Table (9):	Comparison between obese and not as regard spirometric indices	
Table (10):	Comparison between males and fem regard spirometric indices	
Table (11):	Comparison between obese and not as regard Ultrasonographic diaphraindices:	agmatic
Table (12):	Comparison between males and fem regard ultrasonic diaphragamatic in	

Tist of Tables cont...

Table No.	Title	Page No.
Table (13):	Relation between spirometric and ultrasound diaphragmatic in all persons	parameters
Table (14):	Relation between spirometric and ultrasound diaphragmatic in non obese persons	parameters
Table (15):	Relation between spirometric and ultrasound diaphragmatic in obese persons:	parameters
Table (16):	Relation between degree of pattern and sonographic dia indices in obese persons	phragmatic

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Diaphragmatic action during inhalation and exhalation	
Figure (2):	The origin and insertion of the diaphragm	9
Figure (3):	Diaphragm anatomy	10
Figure (4):	Diaphragm U/S (subcostal view)	11
Figure (5):	Anterior subcoastal view of the diaphragmtic U/S	
Figure (6):	Posterior subcostal view of the diaphragm with it's image	
Figure (7):	The xiphoid view of the diaphragm with it's U/S image	
Figure (8):	Normal and abnormal diaphragm movement	
Figure (9):	Lung volumes	27
Figure (10):	Spirometry interpretation steps	28
Figure (11):	Normal and abnormal spiromtry flow volume lobes	
Figure (12):	Spirometry shape	40
Figure (13):	Position of the patient during US examination	
Figure (14):	Mindray DP-1100 Ultrasound device	47
Figure (15):	Diaphragmatic excursion during forced breathing by M mode US	
Figure (16):	Diaphragmatic thickness by M mode US	49
Figure (17):	Comparison between obese and non obese as regard age.	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (18):	Comparison between male and fen	
Figure (19):	Relation between BMI and age studied population	
Figure (20):	Relation between BMI and FEV ₁ studied population	
Figure (21):	Relation between BMI and FVC studied population	
Figure (22):	Relation between BMI and FEV ₁ % is persons	
Figure (23):	Relation between BMI and Diaphragamatic excursion in persons	obese
Figure (24):	Relation between BMI in obese pand degree of restrictive pattern	
Figure (25):	Comparison between obese and nor as regard the ratio between FEV_1 are	
Figure (26):	Comparison between males and fem regard FEV1 and FVC	
Figure (27):	Comparison between males and femoregard right and left diaphra excurcsion.	igmatic
Figure (28):	The relation between right diaphra excursion and FEV ₁ in liters	•
Figure (29):	The relation between right diaphra excursion and FVC	•
Figure (30):	The relation between left diaphra excursion and FEV ₁ in liters	_

Tist of Figures cont...

Fig. No.	Title	Page No.	
Figure (31):	The relation between left diaphra excursion and FVC		
Figure (32):	Specific relation between diaphragmatic thickness and FEV ₁		
Figure (33):	The relation between right diaphrathickness and FVC		
Figure (34):	The relation between left diaphrathickness and FEV ₁	_	
Figure (35):	The relation between left diaphragmatic thickness and FVC66		
Figure (36):	The relation between DTF and FEV ₁ /FVC ratio66		
Figure (37):	The relation between FVC% and BM	/II66	
Figure (38):	Correlation between FEV ₁ % and Diaphragmatic excursion in non persons	obese	
Figure (39):	Relation between FVC and Diaphragmatic excursion in non persons	obese	
Figure (40):	Relation between left Diaphra excursion and FVC in non obese per		
Figure (41):	Relation between DTF and FVC% obese persons		
Figure (42):	Relation between FEV ₁ and Diaphragmatic excursion in obese p	-	
Figure (43):	Relation between FEV ₁ and Diaphragmatic excursion in obese p		

Tist of Figures cont...

Fig. No.		Title		Page N	10.
Figure (44):		between natic thickn			70
Figure (45):		between natic thickn		U	70
Figure (46):		between natic excurs		_	70
Figure (47):		between natic excurs		left rsons	70
Figure (48):	Relation Diaphragn	between natic thickn		O	70
Figure (49):		between natic thickn	and bese per		70

Tist of Abbreviations

Abb.	Full term
ATS	American Thoracic Society
	American thoracic society/European thoracic society, 2005
BMI	•
C	· ·
	Chronic obstructive pulmonary disease
DM	
DTF	Diaphragmatic thickness fraction
	Expiratory reserve volume
	Expiratory reserve volume
	The flow measured between 25% and 75% of the forced expiratory manoeuvre (expressed in lst second)
FEV1	Forced expiratory volume in the first second
FEV1%	$$ Percent of FEV $_1$ of the predicted
FRC	Functional residual capacity
FVC	Forced vital capacity
FVC%	Percent of FVC of the predicted
HS	Highly significant
HTN	
<i>IC</i>	
ICU	Intensive care unit
<i>ILD</i>	Interstial lung disease
<i>IQR</i>	Interquartile range
Kgs	•
L	<u>o</u>
L	Lumbar vertebra

Tist of Abbreviations

Abb.	Full term
I bo	Downdo
Lbs	
	Lower limit of the confidence interval
Lt	•
M^2	-
MHz	_
	Maximum voluntary ventilation
<i>n</i>	
No	
<i>NS</i>	
<i>PEF</i>	Peak expiratory flow
<i>PFTs</i>	Pulmonary function tests
p-value	Probability value
<i>R</i>	Pearson correlation
Rt	Right
<i>RV</i>	Reserve volume
S	Significant
SD	Standard deviation
Sec	Second
sig	Significance
TLC	_ ,
TV or VT	
<i>U/S</i>	Ultra sound
<i>UAO</i>	Upper airway obstruction
	United states of America.
VC	•
	Ventilator induced diaphragmatic
	dysfunction
WHO	world Health Organization

INTRODUCTION

iaphragm is the major respiratory muscle used for quiet breathing. Different structural and functional techniques are available for evaluating the diaphragm. Each technique has its strengths and weaknesses (Gerscovich et al., 2001).

Traditionally, this evaluation is accomplished through physical exam., fluoroscopic sniff test, nerve history. conduction studies, and electromyography (EMG). Nerve conduction studies and EMG in this setting are challenging, uncomfortable, and can cause serious complications such as pneumothorax (Aarti et al., 2013).

Ultrasound of the diaphragm is an evolving diagnostic modality with several techniques and measurements that can be employed for structural and functional assessment of the diaphragm. It is now being more commonly used for the evaluation of diaphragm structure and function (Epelman et al., 2005).

Ultrasound focuses mainly on the posterior and lateral parts of the diaphragm, which are the muscular crural components innervated by the phrenic nerve, rather than the anterior central tendon seen in fluoroscopy, which moves 40% less with respiration. The diaphragm is usually higher in children, young adults, and obese individuals, and its position and motion depend on the position of the subject (Houston et al., 1992).

Muscle fibers shorten with contraction and cause muscle thickening. Increase in diaphragmatic thickness during inspiration has been used as an indirect measurement of muscle fiber contraction (Gottesman et al., 1997).

Age-related changes in body composition and fat distribution may be associated with the pulmonary impairment observed in elderly persons, and some studies found a direct relationship between BMI and the lung function determined by spirometric examination (Lerolle et al., 2009).

Some studies found that healthy subjects with smaller BMI ((<18.5)showed a decreased amount of diaphragmatic motion, and as the BMI and WC increased, the diaphragmatic motion increased. This increase in motion, however, is not linear, and as the BMI and WC increase, the diaphragmatic motion does not show a parallel increase (Arora and Rochester, 1982).

Weight may have effects on pulmonary function tests including impairment on pulmonary function testing, small airway dysfunction and expiratory flow limitation, alterations in respiratory mechanics, decreased chest wall and lung compliance, decreased respiratory muscle strength and endurance, decreased pulmonary gas exchange, lower control of breathing, and limitations in exercise capacity (Faintuch et al., 2014).

AIM OF THE WORK

The aim of this work was to asses the diaphragmatic mobility by chest US in relation to BMI, spirometric parameters trying to find correlation between diaphragmtic mobility (excursion), BMI and spirometric parameters.