The Role of Umbilical Cord Thickness and Hba1c Levels for Prediction of Fetal Macrosomia in Pregnant Diabetic Patients

Thesis

Submitted for partial fulfillment of Master Degree of Obstetrics and Gynecology

By Suzie Boules Soliman

M.B., B.Ch Cairo University, 2010

Supervised By Professor Dr. Sherif Mohamed Habib

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. Laila Aly Farid

Lecturer of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Acknowledgements

First, I would like to praise and thank **God**, the most merciful and beneficial for his help to complete this work.

I am greatly indebted to **Professor Dr. Sherif Mohamed Habib**, **Dr. Laila Aly Farid**, my supervisors, for the guidance and mentorship they rendered to me during the preparation and accomplishment of this dissertation.

Thanks to my family, their support and understanding throughout the entire time was really helpful and enthusiastic. To them, I am indebted.

Table of Contents	
Acknowledgements	I
Table of contents	II
List of tables	III
List of graphs	V
Glossary of terms	IX
Introduction and aim of work	XI
Review of literature	1 70
Chapter 1; Gestational Diabetes and Macrosomia	1 37
1. Gestational diabetes mellitus	
2. Gestational Diabetes Mellitus (GDM) and	1
Macrosomia	14
Chapter 2;Glycated Hemoglobin	
Glycated Hemoglobin (HbA1c)	21
Chapter 3; Umbilical Cord	38 82
1. Embryology, Anatomy, Physiology and Pathology	38
2. Prenatal diagnosis of umbilical cord pathologies	62
by three-dimensional ultrasound	
3. Therapeutic potential of umbilical cord blood	68
cells for type 1 diabetes mellitus	
Subjects and methods	83 88
Results	89 114
Discussion	115 123
Summary	124 129
References	130 146
Arabic summary	

	List of Tables	
1	IADPSG diagnostic criteria for GDM	12
2	Target blood glucose for women with GDM	13
3	Conversion IFCC, DCCT & Mono S – HbA1c	26
4	The approximate mapping between HbA1c values	30
	given in DCCT percentage (%) and eAG (estimated average glucose)	
5		37
3	Sensitivity and specificity of HbA1c levels to screen for gestational diabetes mellitus	31
6	Comparison between both subgroups as regards the	90
	baseline parameters/characteristics	
7	Comparison between both subgroups as regards the	94
	delivery data	
8	Comparison between both subgroups as regards the	98
	umbilical cord area (UCA; mm²), measured at 27 – 28	
	weeks and $36 - 37$ weeks of gestation	
9	Comparison between both subgroups as regards the	101
	glycated hemoglobin levels (HbA1c; %), measured at	
	27 - 28 weeks and $36 - 37$ weeks of gestation	
10	Relationship between birth weight (gm) and the	104
	umbilical cord area (UCA; mm²) measured at 27 – 28	
	weeks and $36 - 37$ weeks of gestation in subgroup 1	
	(Macrosomic fetuses; n= 20)	
11	Relationship between birth weight (gm) and the	108
	glycated hemoglobin (HbA1c; %) measured at 27 - 28	
	weeks and $36 - 37$ weeks of gestation in subgroup 1	
	(Macrosomic fetuses; n= 20)	

12	Receiver-Operator Characteristic (ROC) Curve analysis	111
	of the predictive value of the Umbilical Cord Area	
	(UCA; mm ²) at 27 ~ 28 weeks of gestation and the	
	birth weight (gm)	
13	Receiver - Operator Characteristic Curve (ROC)	113
	comparison between umbilical cord area (UCA; mm²)	
	and the glycated hemoglobin (HbA1c; %) for the	
	prediction of fetal macrosomia	

	List of Graphs	
1	Results of maternal hyperglycemia modified according	14
	to Pedersen's hypothesis	
2	Beginning of the umbilical cord	39
3	Contents and development of the umbilical cord	40
4	Fetus at ~53 days post-ovulation (21.5 mm crown-	41
	rump length)	
5	Remnants of the yolk sac stalk (A) and the allantois (B)	42
	can often be identified, especially near the fetal end of	
	the cord	
6	Cross section of normal umbilical cord	43
7	The umbilical cord protects the fetal vessels that connect	44
	the placenta and fetus	
8	Fetal neutrophil migration through the umbilical cord	47
	(funisitis)	
9	True knot in an umbilical cord (arrow)	48
10	Umbilical cord braiding in a monochorionic-	49
	monoamnionic twin placenta at 34 weeks gestation	
11	Loss of Wharton's jelly	50
12	Umbilical cord prolapse	53
13	Hypertwisted umbilical cord	54
14	Insertion of umbilical cord into chorionic plate	55
15	Rupture of a fetal vessel within the external membranes	56
16	Rupture of a velamentous fetal vessel due to necrotizing	57
	inflammation	
17	Doppler ultrasound of the umbilical cord	59
18	Doppler flow ultrasound of the umbilical cord	60

19	Therapeutic cordocentesis occasionally leads to	61
	umbilical vessel hemorrhage	
20	Three-dimensional US of the umbilical cord and	63
	placenta	
21	Three-dimensional Doppler ultrasound of true knot	65
22	Two-dimensional and three-dimensional ultrasound	67
23	Components of umbilical cord blood (UCB) and	71
	advantages of UCB therapy for type 1 diabetes mellitus	
24	Maternal age distribution (years) among the studied	92
	sample and its subgroups	
25	Fetal sex distribution (male/female) among the studied	93
	sample and its subgroups	
26	Gestational age at delivery (weeks) distribution among	95
	the studied sample	
27	Mode of delivery distribution among the studied sample	96
28	Comparison between both subgroups as regards the	97
	mean birth weight (gm). Data are represented as	
	arithmetic mean, standard of deviation as well as the	
	95% confidence interval for the mean in a Box-and-	
	Whisker graph	
29	Comparison between both subgroups as regards the	99
	mean umbilical cord area (UCA; mm²) measured at 27	
	- 28 weeks of gestation. Data are represented as	
	arithmetic mean, standard of deviation as well as the	
	95% confidence interval for the mean in a Box-and-	
	Whisker graph	

30	Comparison between both subgroups as regards the	100
	mean umbilical cord area (UCA; mm²) measured at 36	
	- 37 weeks of gestation. Data are represented as	
	arithmetic mean, standard of deviation as well as the	
	95% confidence interval for the mean in a Box-and-	
	Whisker graph	
31	Comparison between both subgroups as regards the	102
	glycated hemoglobin (HbA1c; %) measured at 27 - 28	
	weeks of gestation. Data are represented as arithmetic	
	mean, standard of deviation as well as the 95%	
	confidence interval for the mean in a Box-and-Whisker	
	graph	
32	Comparison between both subgroups as regards the	103
	glycated hemoglobin (HbA1c; %) measured at 36 - 37	
	weeks of gestation. Data are represented as arithmetic	
	mean, standard of deviation as well as the 95%	
	confidence interval for the mean in a Box-and-Whisker	
	graph	
33	Correlation between birth weight (gm) and umbilical	105
	cord area (UCA; mm²) measured at 27 - 28 weeks of	
	gestation	
34	Correlation between birth weight (gm) and umbilical	106
	cord area (UCA; mm²) measured at 36 - 37 weeks of	
	gestation	
35	Correlation between birth weight (gm) and umbilical	107
	cord area (UCA; mm²) measured at 27 - 28 weeks of	
	gestation for the total sample	

36	Correlation between birth weight (gm) and glycated	109
	hemoglobin (HbA1c; %) measured at 27 - 28 weeks of	
	gestation	
37	Correlation between birth weight (gm) and glycated	110
	hemoglobin (HbA1c; %) measured at 27 - 28 weeks of	
	gestation	
38	Receiver-Operator Characteristic (ROC) Curve analysis	112
	of the predictive value of the Umbilical Cord Area (UCA;	
	mm ²) at 27 ~ 28 weeks of gestation and the birth weight	
	(gm)	
39	Receiver – Operator Characteristic Curve (ROC)	114
	comparison between umbilical cord area (UCA; mm²)	
	and the glycated hemoglobin (HbA1c; %) for the	
	prediction of fetal macrosomia	

Glossary of Terms

3DUS Three-Dimensional Ultrasound

The Association For Clinical Biochemistry And Diabetes

ACBDUK United Kingdom

ADA

American Diabetes Association

Autologous non-Myeloablative Hematopoietic Stem Cells

AHSCT Transplantation

BMI Body Mass Index

CAP College Of American Pathologists

CB-SC Cord Blood-Derived Multipotent Stem Cells

CS Cesarean Section

DCCT Diabetes Control And Complications Trial

DHA Docosahexaenoic Acid

DKA Diabetic Ketoacidosis

DPP Dipeptidyl Peptidase

eAG Estimated Average Glucose

EASD European Association For The Study Of Diabetes

EPC Endothelial Progenitor Cells

EPOCH Exploring Perinatal Outcomes Among Children

FPG Fasting Plasma Glucose

GCK Glucokinase

GCT Glucose Challenge Test

GDM Gestational Diabetes Mellitus

GHB Glycated Hemoglobin

GVHD graft-versus-host disease

HLA Human Leukocyte Antigen

hPL Human Placental Lactogen

HPLC High-Performance Liquid Chromatography

HSCs Hematopoietic Stem Cells

HSCT Hematopoietic Stem Cells Transplantation

International Association Of Diabetes And Pregnancy

IADPSGCP

Study Groups Consensus Panel

IDF International Diabetes Federation

IFCC International Federation Of Clinical Chemistry

IL6 Interleukin 6

MDRTC Michigan Diabetes Research And Training Center

MHC Major Histocompatibility Complex

MiG Metformin In Gestational Diabetes

MSCs Mesenchymal Stem Cells

NGSP National Glycohemoglobin Standardization Program

NGT Normal Glucose Tolerance

NOD Non-Obese Diabetic

OCT4 Octamer-Binding Transcription Factor 4

PHA Phytohemagglutinin

STZ Streptozotocin

T1D Type 1 Diabetes

T2D Type 2 Diabetes

TNFα Tumor Necrosis Factor Alpha

TUI Tomography Ultrasound Imaging

UCB Umbilical Cord Blood

UKPDS United Kingdom Prospective Diabetes Study

WHO World Health Organization

WJ Wharton's Jelly

Alphabetically ordered

Introduction

The umbilical cord is responsible for maternal-fetal blood flow. Normally, it is composed of two arteries permeated with venous blood and a vein that transports arterial blood, cushioned by a special type of mucous connective tissue known as Wharton's jelly (WJ) and by remnants of the allantoids (Wang et al., 2004).

There is a significant differences in mean gestational age, mode of delivery, birth weight, and adverse perinatal outcome between fetuses with umbilical cord thickness below the 5th percentile (lean umbilical cord) vs. those with umbilical cord thickness above the 5th percentile (non-lean cord) in the first and early second trimesters of gestation (Goynumer et al., 2008).

Others have shown that umbilical cord diameter and area measurements are associated with increased fetal macrosomia (Weissman and Jakobi, 1997; Ghezzi et al., 2007).

Macrosomia defined as weight of a full-term infant greater than 90th percentile for gestational age or higher than 4000 gm occurs in 6%-10% of all deliveries (Martin et al., 2008; Mondestin et al., 2002).

Reported risk factors of macrosomia are Body mass index (BMI) before pregnancy, gestational weight gain, gestational diabetes mellitus (GDM), mother's age and gender (Yu DM et al., 2008).

GDM is associated with many adverse pregnancy outcomes such as macrosomia and CS delivery (Crowther et al., 2005; Barakat et al., 2010) and at the same time Macrosomia is a well-known indicator of maternal diabetes in fetus which is strongly associated with prematurity, respiratory distress syndrome, birth trauma, fetal death and adverse maternal outcome (Koklu et al., 2007; Yessoufou & Moutairou, 2011; Lepercq et al., 2001; Cox, 1994; Stotland et al., 2004).

Socioeconomic advances and the improvement in women's living standards can predispose to the development of fetal macrosomia, which may result in childhood obesity, it is a vicious cycle (Van Eerden, 2011; Satpathy et al., 2008).

Obesity in pregnancy is also recognized as a risk factor for many maternal and neonatal adverse outcomes including macrosomia, increased rate of cesarean section (CS), preeclampsia and gestational diabetes (GDM) (Callaway et al., 2006; Athukorala et al., 2010 and Di et al., 2012).

Also, The placenta, as the interface between mother and fetus, is central to prenatal growth control. The fetus is dependent upon the placenta for its supply of nutrients and oxygen from the mother. Previous research found that the placental weights in the macrosomic fetuses were significantly higher than those with normal weight and placental weight was positively correlated with birth weight (Hua Jiang et al., 2009).

Fetal macrosomia is associated with a higher frequency of operative deliveries, post-partum hemorrhages, birth injury during vaginal delivery, and neonatal hypoglycemia. Known maternal risk factors are only identified in 40% of women who deliver macrosomic babies (Auger et al., 2013).

Macrosomia has been suggested as one of the possible risk factors for obesity in many studies (Van Eerden, 2011; Satpathy et al., 2008).

Children with macrosomia tend to gain weight faster than those born at normal weight. Abnormal weight gain in the uterus and during infancy may have an adverse influence on health in childhood and adult life. Studies show that macrosomic infants have a higher risk of developing obesity and metabolic disorders (Boney et al., 2005; Dyer et al., 2007).

Macrosomia is also associated with higher risk of certain cancers (Sprehe et al., 2010; Harder et al., 2010; Ognjanovic et al., 2010; Ahlgren et al., 2007).

The morbidity of macrosomia reaches 7~10% (Stotland et al., 2004).

Therefore, tracking of abnormal birth weight and related risk factors have significant public health implications (Shan et al., 2014).

Diabetes represents a major public health concern and efforts to control hyperglycemia are an important element of the management of patients with type 2 diabetes (American Diabetes Association, 2011).

Hyperglycaemia is measured using hemoglobin A1c (HbA1c) test which assesses the average level of blood glucose in the preceding 60-120 days. For diabetes patients an HbA1c target of 6.5% (48 mmol/mol) is recommended (National Institute for Health and Clinical Excellence, 2008 and International Diabetes Federation, 2013).

Gestational diabetes mellitus (GDM) affects 2~6% of pregnant women and is associated with increased risk of important adverse perinatal outcomes, including macrosomia and birth injury (Hong et al., 2009; Stotland et al., 2004).

The birth of a macrosomic fetus has been associated with adverse outcomes for both mother and fetus. Shoulder dystocia during delivery and related permanent brachial plexus injury may be seen. Both neonatal mortality and morbidity are higher in macrosomic fetuses compared with normal weight fetuses (Ghezzi et al., 2007).

Maternal complications such as postpartum hemorrhage, infections, as well as third- or fourth-degree vaginal lacerations may occur as a result of operative delivery (Ferber, 2000).