

Correlation between HIF-1a and BCL2 Expression and Tumor Behavior in Locally Advanced Head and Neck Squamous Cell Carcinoma

Thesis

Submitted for Partial Fulfillment of MD Degree in clinical Oncology and Nuclear Medicine

Presented by

Lamiaa Moustafa Abdel Megied Mohamed Ahmed M.B., B. Ch, M.Sc

Supervised by

Prof. Dr./ Zeinab Mohammed Abdel-Hafeez Elsayed

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr./ Mohammad Sabry Elkady

Assis. Prof. of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr./ Waleed Abd Elmmonem Biomy

Assis. Prof. of clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr./ Mai Mohamed Ali Ezz El Din

Assis. Prof. of clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Zeinab Mohammed Abdel-Vafeez Elsayed**, Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mohammad Sabry Elkady,** Assistant Prof. of Clinical Oncology and Nuclear Medicine Faculty of medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Waleed Abd Elimmonem Biomy,** Assistant Prof. of Clinical Oncology
and Nuclear Medicine Faculty of Medicine, Ain Shams
University, for his great help, active participation and
guidance.

I wish to introduce my deep respect and thanks to **Dr.**Mai Mohamed Ali Ezz El Din, Assistant Prof. of
Clinical Oncology and Nuclear Medicine Faculty of Medicine,
Ain Shams University, for her kindness, supervision and
cooperation in this work.

I would be forever in debt to **Dr. Mashwa El Khazragy**, Consultant of Clinical Pathology, Ain Shams
University for her tremendous effort and dedication
throughout this work.

Last but never the least, I would like to thank my family: my mother, my father, my husband and my little angel, without your continuous help, encouragement, support and love, I would have never been able to accomplish anything. You always make me want to be a better person.

Jamiaa Moustafa Abdel Megied

List of Contents

Title	Page No.
List of Tables	5
List of Figures	
List of Abbreviations	
Introduction	1
Aim of the Work	4
Review of Literature	
Epidemiology	5
Diagnosis and Staging Evaluation	10
Molecular Biology	25
Patients and Methods	
Results	69
Discussion	96
Summary and Conclusion	105
Recommendations	107
References	108
Appendix	132
Arbic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	T staging of lip and oral cavity	20
Table (2):	T staging of oropharynx	20
Table (3):	T staging of hypopharynx	21
Table (4):	T staging of larynx	22
Table (5):	Regional lymph nodes staging and metastasis	
Table (6):	Stage grouping of HNSCC rath	
Table (7):	Demographic Characteristics and Data of the studied Subjects	
Table (8):	Comparative statistics of HIF-1α a among various studied groups healthy control) using Kruskal-Walli	(HNSCC/
Table (9):	Comparative Statistics between HNSCC subgroups for expression and BCL-2 using Mann-Witney Test	of HIF-α
Table (10):	Comparative analysis of expression HIF-1 α and BCL-2 between the stages of HNSCC patients (by Krusk test value)	different xal-Wallis
Table (11):	Spearman's correlation analysis of measured parameters and OS a among the HNSCC patient	and PFS
Table (12):	Comparative analysis of OS and PFS the high and low HIF-1a expression the HNSCC patients	ns among

List of Cables (Cont...)

Table No.	Title Pag	ge No.
Table (13):	Comparative analysis of OS and PFS between the high and low BCL-2 expressions and the HNSCC patients	nong
Table (14):	COX regression analysis for factors affectors and PFS in HNC patients (months)	_

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Mechanism of action of the papillomavirus (HPV) on cell cycle	
Figure (2):	EGFR activation pathways	33
Figure (3):	Schematic depicting HIF path normoxic and hypoxic conditions	•
Figure (4):	Schematic overview of the Bcl-reproteins	
Figure (5):	Expression levels of HIF-1α and B different studied groups	•
Figure (6):	Expression levels of HIF-1 α and B different HNSCC T stage subgroup	•
Figure (7):	Scatter plot explaining the correlate expression values of HIF-1α and HNSCC patients	d BCL-2 in
Figure (8):	Kaplan–Meier survival curve fo according to HIF-1α	
Figure (9):	Kaplan–Meier survival curve f according to HIF-1α	
Figure (10):	Kaplan–Meier survival curve for the BCL-2	
Figure (11):	Kaplan–Meier survival curve for t	
Figure (12):	Kaplan–Meier survival curves for according to age.	
Figure (13):	Kaplan–Meier survival curves faccording to age	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Kaplan–Meier survival curves according to gender	
Figure (15):	Kaplan–Meier survival curves according to gender	
Figure (16):	Kaplan–Meier survival curves according to smoking	
Figure (17):	Kaplan-Meier survival curves according to smoking	
Figure (18):	Kaplan–Meier survival curves according to tumor site	
Figure (19):	Kaplan–Meier survival curves according to tumor site	
Figure (20):	Kaplan–Meier survival curves according to tumor stage	
Figure (21):	Kaplan–Meier survival curves according to tumor stage	
Figure (22):	Kaplan–Meier survival curves according to T stage	for the PFS
Figure (23):	Kaplan–Meier survival curves according to T stage	
Figure (24):	Kaplan–Meier survival curves according to nodal infiltration	
Figure (25):	Kaplan–Meier survival curves according to nodal infiltration	
Figure (26):	Kaplan–Meier survival curves according to response to treatmen	
Figure (27):	Kaplan–Meier survival curves according to response to treatmen	for the OS

List of Abbreviations

Abb.	Full term
17-AAG	17-N-Allylamino-17-demethoxy geldanamycin
	17-dimethylaminoethylamino-17
	demethoxygeldanamycin
2ME2	2-Methoxyestradiol
<i>ADH</i>	Alcohol Dehydrogenase
Akt	Serine / Threonine-Specific Protein Kinase
<i>ALDH</i>	Aldehyde Dehydrogenase
	Alternative Reading Frame
	Adenosine Triphosphate
	B-cell Lymphoma 2
	Bcl-2 Homology 3
	Carbonic Anhydrase 9
CT	Computed Tomography
	Connective Tissue Growth Factor
DAHANCA	Danish Head and Neck Cancer Group
	$Dihydrofolate\ Reductase$
	Deoxyribonucleic Acid
	Depth of Invasion
	E6-Associated Protein
EF5	([2-(2-nitro-1H-imidazol-yl)-N-(2, 2, 3, 3, 3-pentaflouropropyl) acetamine]
<i>EGFR</i>	Epidermal Growth Factor Receptor
<i>ErbB</i>	Erythroblastic Leukemia Viral Oncogene Homolog 2
EORTC	European Organisation for Research and Treatment of Cancer
FAZA	Fluoro azomy cinarabin of urano side
<i>FDG</i>	Fluoro-deoxyglucose
FISMO	Fluorine 18-Fluoromisonidazole
GLUTs	Glucose Transporters

List of Abbreviations (cont...)

Abb.	Full term
Grh2	Growth Factor Receptor-Bound Protein 2
	Guanine Triphosphate
<i>Gy</i>	
•	Hyperbaric Oxygen
	Histone Deacetylase
	Human Epidermal Growth Factor Receptor
	Hypoxia-Inducible Factor 1 Alpha
	Hypoxia-Inducible Gene-2
	Head and Neck Cancer
	Head and Neck Squamous Cell Carcinoma
	Human Papilloma Virus
	Hypoxia Response Elements
	Heat Shock Protein 90
	Insulin-Like Growth Factor-1 Receptor
<i>IHC</i>	Immunohistochemistry
	IkappaB Kinase Beta
<i>IL</i>	Interleukin
<i>INF</i>	Interferon
<i>IQR</i>	Interquartile ratio
<i>JAK</i>	Janus Kinase
LOX	Lysyl Oxidase
	Mitogen-Activated Protein Kinases
<i>MDM2</i>	Mouse Double Minute 2 Homolog
	Millimeter Mercury
<i>MOM</i>	Mitochondrial Outer Membrane
MRI	Magnetic Resonance Imaging
	Mammalian Target of Rapamycin
NRP-1	- ,
NRP-2	Neuropilins

List of Abbreviations (Cont...)

Abb.	Full term
<i>OPN</i>	Osteopontin
	Oropharyngeal Squamous Cell Carcinoma
	Overall Survival
	Protein p53
	Protein p63
-	Protein p73
	Platelet-Derived Growth Factor Receptor
	Pyruvate Dehydrogenase Kinase
	2-Phenethyl Isothiocynate
	Positron emission tomography -Computed Tomography
PFS	Progression Free Survival
<i>PHD</i>	Prolyl Hydroxylase Domain
PI3K	Phosphatidylinositol 3-Kinase
PIP2	Phosphorylation of Phosphatidylinositol 4, 5- Diphosphate
PIP3	Phosphorylation of Phosphatidylinositol 3, 4, 5-triphosphate
<i>PlGF</i>	Placental Growth Factor
PO2	Oxygen Pressure
<i>pRb</i>	Retinoblastoma Protein
<i>R</i>	Correlation Coefficient
<i>Raf</i>	Rapidly Accelerated Fibrosarcoma
<i>RAS</i>	Human Homologs of Murine Sarcoma Virus
	Oncogenes
<i>RNA</i>	$Ribonucleic\ Acid$
<i>ROS</i>	Reactive Oxygen Species
RQ	Relative Quantitation of gene expression in
relation to h	ousekeeper gene.

List of Abbreviations (Cont...)

Abb.	Full term
<i>RR</i>	$Relative\ Risk$
<i>RT</i>	Radiotherapy
<i>RTKs</i>	Receptor Tyrosine Kinases
RTOG	Radiation Therapy Oncology Group
	Squamous Cell Carcinoma
<i>SD</i>	Stable Disease
STAT	Signal Transducer and Activator of
	Transcription
STIR	Short Tau Inversion-Recovery
<i>TGF</i> -a	Transforming Growth Factor-Alpha
<i>TP53</i>	Tumor Protein p53
<i>TPF</i>	Docetaxel, Cisplatin and 5 Flourouracil
<i>TPZ</i>	Tirapazamine
<i>TSA</i>	Trichostatin A
<i>VEGF</i>	Vascular Endothelial Growth Factor
<i>VGFR</i>	Vascular Endothelial Growth Factor Receptor
<i>VHL</i>	Von Hippel–Lindau

ABSTRACT

Background: Head and neck cancer represents more than 550,000 cases annually. It accounts for 380,000 deaths every year. Despite aggressive treatment, only 35% to 55% of patients who present with locally advanced HNC cancer remain alive and free of disease 3 years after standard curative treatment. Thirty percent to 40% of patients develop locoregional recurrences, and distant metastases occur in 20% to 30%. Most recurrences appear quickly within 2 years of initial treatment and an additional 10% of patients will have evidence of distant metastases at the time of first presentation.

Purpose: To retrospectively determine the prognostic effect of T stage in locally advanced head and neck cancer.

Methods: This study retrospectively analyzed 40 patients diagnosed with locally advanced head and neck cancer. Patients were diagnosed by a tissue biopsy and they were staged by endoscope and CT neck or MRI neck with contrast. They received their treatment and were followed up every 3 months by CTs.

Results: We found a statistically significant correlation between T stage and both PFS and OS (95%, CI 1.00 - 3.10, p=0.04 and 95% CI 1.01 - 2.65, p=0.05 respectively).

Conclusion: This study confirmed that the T stage of the tumor is an important prognostic factor in locally advanced head and neck cancer.

Keywords: Locally advanced head and neck cancer. T stage. Prognosis.

INTRODUCTION

cross the world, head and neck cancer (HNC) represents more than 550,000 cases and 380,000 deaths every year. Males are affected more than females with a ratio ranging from 2:1 to 4:1 (Fitzmaurice et al., 2017).

Previous hospital-based studies from Egypt showed that HNC constitutes about 17-20% of all malignancies. A study describing the epidemiology of HNC in Egypt using data from the only population-based cancer registry, a higher incidence of HNC among males than females and higher incidence in urban than rural populations were documented. Overall, the incidence of HNC was highest in the 70+ age group in both males and females (Attar, 2010).

Squamous cell carcinomas represent nearly 90% of all head and neck cancers, arising mainly in the oral cavity but also occurring in the nasal cavity, pharynx and larynx (Mehanna et al., 2010).

The patterns of local invasion and distant spread of head and neck squamous cell carcinoma (HNSCC) differ depending on the intrinsic properties of individual tumors themselves but these events are also strongly influenced by properties of the local tumor microenvironment. For example, the presence of stromal cells, such as cancer associated fibroblasts and of recruited inflammatory cells, markedly influences tumor behavior (Wheeler et al., 2014).

Hypoxia is also considered a major microenvironmental influence and HNSCC, like many solid tumors, develops areas of hypoxia when the blood supply becomes limited due to tumor growth, vascular disturbances or metabolic changes (Overgaard, 2011).

Efficacy of radiation treatment relies on DNA damage, either via direct damage of DNA by ionizing radiation or by free radicals that are generated and subsequently react with DNA, causing damage. Oxygen free radicals are highly reactive and are the primary source of radiation-induced DNA damage, and oxygen is, therefore, a potent radiosensitizer. Hypoxic HNSCC, measured by pretreatment tumor PO2, have been shown to be significantly more likely to persist or recur locoregionally (*Nordsmark and Overgaard*, 2000).

Hypoxia-inducible factor 1α (HIF1- α) is an intracellular transcription factor that undergoes degradation under welloxygenated conditions but is stabilized under hypoxic conditions. When HIF1- α is stabilized, it regulates the expression of proangiogenic genes, such as vascular endothelial growth factor (VEGF) (Koukourakis et al., 2002).

In a study of 75 HNSCC specimens, overexpression of HIF1-α, assessed by immunohistochemistry (IHC) was associated with locally aggressive behavior (Nordsmark et al., 2007).