

Comparison between B-scan Ultrasonography and Optical Coherence Tomography in Evaluation of Macular Oedema

Thesis

Submitted for Partial Fulfillment of Master Degree in **Ophthalmology**

By

Amira Sabry Abd El Aziz

M.B., B.Ch Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Hany Mohamed H. El-Ibiary

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Prof. Dr. Lamia Salah Elewa

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed El-Bayoumy

Lecturer of Ophthalmology Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University Cairo 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my profound gratitude to **Prof. Dr. Hany Mohamed El-Ibiary,** Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for giving me the chance of working under his supervision. I appreciated his constant encouragement.

My deeply felt appreciation and sincere gratitude to **Prof. Dr. Lamia Salah Elewa,** Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for her kind supervision, guidance and great help throughout the present work.

I am also delighted to express my appreciation and gratitude to **Dr. Ahmed Mohamed El-Bauomy,** Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University, for his great efforts and continuous directions throughout the whole work.

I am immensely obliged to **Prof. Dr. Zeinab & Senbary**, Professor of Ophthalmology, Faculty of Medicine, Cairo University, for her great help throughout the practical part of this work.

Last but not least, I am indebted to my family and friends for their love, patience and support. It would not have been possible without them.

Amira Sabry Abd El Aziz

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	10
Introduction	1 -
Aim of the Work	4
Review of Literature	
Chapter 1: Applied Anatomy of the Retina	5
Chapter 2: Macular Edema	21
Chapter 3: Diagnosis of Macular Edema	36
Chapter 4: Optical Coherence Tomography	42
Chapter 5: B-Scan Ultrasonography	56
Patients and Methods	72
Results	83
Discussion	98
Summary	103
Conclusion	106
References	107
Arabic Summary	

List of Tables

Table No.	Title Pa	ge No.
Table (1):	Etiologies of cystoid macular eden without leakage on fluoresce angiography	in
Table (2):	Right eye CRT measured by different OC machines in healthy individuals	
Table (3):	Description of data for the studied cases:	84
Table (4):	Relation between Ultrasound grade macular thickening and the studie parameters.	ed
Table (5):	Relation between final clinic determination using Biomicroscopy arthe studied parameters	nd
Table (6):	Relation between mean OCT central macular thickness (± SD) and the studied parameters.	ed
Table (7):	Correlation between OCT central macula thickness and age of the studied cases	
Table (8):	Diagnostic accuracy of ultrasound prediction of final clinical determination results.	on

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anatomical and clinical terminolog to describe the regions of the retina	
Figure (2):	Schematic showing regions of reticorresponding histologic architectu	
Figure (3):	A, Layers of the retinary Photomicrograph of same area. A inner portion of choroid choriocapillaris	t top is with
Figure (4):	Diabetic macular edema in a previously treated with parphotocoagulation	nretinal
Figure (5):	Ischemic central retinal vein oc Fundus photograph	
Figure (6):	Retinal artery macroaneurysm exudates at the macula due to leakage	chronic
Figure (7):	Radiation maculopathy with telangiectasia and hemorrhage	
Figure (8):	Bilateral idiopathic partelangiectasia can often be demonstrated with red-free photographics.	st be
Figure (9):	Coats disease. Extensive value abnormalities and exudation	
Figure (10):	Fundus photograph and fluc angiography of an eye with inter- uveitis showing cystoid macula ede	mediate
Figure (11):	Autofluorescence angiography sho cysts with a hyperfluorescence thinning of the macular pigments	due to

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (12):	Fluorescein angiography A-C sho gradual filling of the individual cys fluorescein	sts with
Figure (13):	High definition OCT image of retinal layers	
Figure (14):	Morphological patterns of DME on	OCT49
Figure (15):	Pseudophakic CME with cystic spa subfoveal subretinal fluid	
Figure (16):	(A) CME in a case of non-ischemic (B) After anti-VEGF therapy	
Figure (17):	Vertical OCT scan shows a s macular edema pattern in a s superotemporal BRVO	case of
Figure (18):	CME with intraretinal cystoid spa subretinal fluid associated with a epiretinal membrane	a broad
Figure (19):	VMT with vitreous attached nasa detached temporally causing CM disruption of ellipsoid layer	IE and
Figure (20):	Transverse B-scan position	64
Figure (21):	Transverse B-scan	64
Figure (22):	Dynamic B-scan screening of the p segment	
Figure (23):	Longitudinal B-scan position	66
Figure (24):	Longitudinal B-scan	67
Figure (25):	Axial probe position	68

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (26):	VuPAD TM , Sonomed Escalon In NY, USA.	
Figure (27):	Spectral OCT SLO, Optos, 2012, FL, USA)	
Figure (28):	Example of one of the patien normal Right eye, OCT showing thickness 193 µm. B-scan US sh macular edema (grade 0)	central owed no
Figure (29):	Example of one of the patients we eye diabetic macular edema, OCT central thickness 378 µm	showed
Figure (30):	Example of one of the patients very eye severe macular edema, OCT central thickness 976 µm, B-s showed pronounced (grade 2) edema	showed can US macular
Figure (31):	Gender distribution among the cases	
Figure (32):	Laterality among the studied eyes	85
Figure (33):	Ultrasound grade of macular thick the studied eyes	-
Figure (34):	Slit-lamp Biomicroscopical determacular thickening among the eyes.	studied
Figure (35):	Final diagnosis of the studied eyes	s87
Figure (36):	Relation between Ultrasound g macular thickening and the me central macular thickness.	an OCT

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (37):	Relation between Ultrasound g macular thickening and Biomicro detection of macular edema	oscopical
Figure (38):	Relation between Ultrasound g macular thickening and the diagnosis of the studied eyes	e final
Figure (39):	Relation between Biomicro detection of macular thickenic Ultrasound grade of macular thick	ng and
Figure (40):	Relation between Biomicro detection of macular thickening mean OCT central macular thickn	and the
Figure (41):	Relation between Biomicro detection of macular thickening a diagnosis of the studied eyes	nd final
Figure (42):	Relation between mean OCT macular thickness and the final d of the studied eyes	iagnosis
Figure (43):	Sensitivity and specificity of ultrasound in detecting macular ed	

Tist of Abbreviations

Abb.	Full term
μm	micrometer
	Three Dimensional
	. Anterior to the Equator
	Age Related Macular Degeneration
	. Best Corrected Visual Acuity
	. Branch Retinal Vein Occlusion
CF	
	. Cystoid Macular Edema
	. Choroidal Neovascularization
	. Cone Outer Segment Tip
	. Central Retinal Artery
	. Central Retinal Thickness
CRV	. Central Retinal Vein
CRVO	. Central Retinal Vein Occlusion
dB	. Decibel
DM	. Diabetes mellitus
DME	. Diabetic Macular Edema
DMT	. Diffuse macular thickening
DR	. Diabetic Retinopathy
DRT	. Diffuse Retinal Thickness
E	. Equator
ELM	. External Limiting Membrane
ERM	. Epiretinal Membrane
ETDRS	. Early Treatment Diabetic Retinopathy
	Study
	. Fluorescein angiography
	Fundus Autofluorescence
	. Ganglion Cell Layer
	. Hypoxia-inducible factor 1-alpha
HM	
	. Hemiretinal vein occlusion
HTN	
ICP	. Intra Cranial Pressure

Tist of Abbreviations cont...

Abb.	Full term
IL	Interlouking
	Internal Limiting Membrane
	Inferial Limiting Membrane Inferior Nasal Artery
	Inner Nuclear Layer
	Intra Ocular Pressure
	Inner Plexiform Layer
	Inner segment/outer segment
15/05	photoreceptor junction
ITA	Inferior Temporal Artery
	Juxtafoveal Retinal Telangiectasis
	Longitudinal Scan
ME	9
MHz	
	Neodymium:Yttrium Aluminum Garnet
NFL	
	Optical Coherence Tomography
	Outer Nuclear Layer
	Outer Plexiform Layer
PE	Posterior to the Equator
PHT	Posterior hyaloid Traction
PL	Perception of Light
PRP	Panretinal Photocoagulation
PVD	Posterior Vitreous Detachment
	Relative afferent pupillary defect
RMG	Retinal Muller Glial cells
ROP	Retinopathy of prematurity
	Retinitis Pigmentosa
	Retinal pigment epithelium
RVO	Retinal Vein Occlusion
SD	-
	Super Luminescent Diode
	Scanning laser ophthalmoscopy
SNA	Superior Nasal Artery

Tist of Abbreviations cont...

Abb.	Full term	
SRD	Serous Retinal Detachment	
SRF	Subretinal Fluid	
STA	Superior Temporal Artery	
T	Transverse Scan	
TD	Time Domain	
TNF-α	Tumor necrosis factor-α	
TRD	Tractional Retinal detachment	
U/S	Ultrasound	
UVR	Ultra Violet Rays	
VA	Visual Acuity	
VEGF	Vascular endothelial growth factor	
	Vitreomacular Traction Syndrome	

Introduction

Macular edema is a common phenomenon in various diseases where fluid accumulates in between the retinal cells. The fluid originates from the intravascular compartment. The focal, diffuse, and cystic forms are all characterized by extracellular accumulation of fluid, specifically in Henle's layer and the inner nuclear layer of the retina. The compartmentalization of the accumulated fluid is likely to be due in part to the relative barrier properties of the inner and outer plexiform layers (Tranos et al., 2004).

The classic pattern of cystoid macular edema (CME) with the petaloid appearance originating from the fluorescein leakage from perifoveal capillaries may be seen in cases of advanced edema of various origins. This includes postsurgical CME as well as CME associated with one of the following conditions: diabetes, vascular occlusion, hypertensive retinopathy, epiretinal membranes, intraocular tumors (e.g., melanoma, choroidal hemangioma), intraocular inflammation (e.g., pars planitis), macroaneurysm, retinitis pigmentosa, choroidal neovascularization, and radiation retinopathy (*Tranos et al.*, 2004).

Cystoid macular edema may have severe implications for the function of the retina, including decreased visual acuity and contrast sensitivity. Acute or chronic edema causes anatomical disruption that may result in cellular dysfunction and death. Treatment of CME is important because chronic edema may result in degenerative changes in the macula and permanent loss of vision (*Brown et al., 2011*). In addition, large cystic changes in the retina may lead to thinning and loss of inner retinal tissue, or the formation of lamellar hole (*Tsukada et al., 2011*).

Early detection of CME is critical for diagnosis and management. Traditional methods of assessing macular edema include contact and noncontact slit lamp biomicroscopy, indirect ophthalmoscopy, fluorescein angiography (FA), and fundus stereo photography. However the interpretation of their results can be subjective, and subtle changes in retinal thickness in early CME may not be evident.

Optical coherence tomography (OCT) correlates well with retinal histology and can be used to quantitatively and qualitatively monitor retinal thickness over time. Compared to biomicroscopy and FA, OCT is more sensitive in detection of macular edema and subretinal fluid, and subclinical macular edema is often only detected by OCT (*Hee et al.*, 1995a).

Fluorescein angiography and OCT have limitations. Both tests require the ocular media to be of sufficient clarity to image the retina. Yet in certain patients, opacities in the ocular media limit biomicroscopy, FA, and OCT. Furthermore, a high degree of patient cooperation is required to ensure reliable and accurate testing. However, certain patients, such as children,

Introduction

often cannot tolerate a FA or follow the specific fixation instructions for OCT testing.

Ophthalmic ultrasonography is a well-accepted noninvasive diagnostic tool. Ultrasonography has the advantage of reliably imaging the posterior segment regardless of the ocular media status. Furthermore, ultrasonography is less dependent on patient cooperation for reliable testing than either FA or OCT (*Fisher et al.*, *1991*).