Microglial Activation in the Hippocampus of LPS/CMS Exposed Rats: The Role of Lithium Chloride in the Wnt/β-Catenin Pathway

Thesis submitted for partial fulfilment of M.D. Degree in Pharmacology **By**

Mohamed Zaki Eldin Mohamed Habib

Assistant Lecturer in Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University

Supervised by

Prof. Ahmed Mohyeldin Abdel-tawab

Professor of Clinical Pharmacology

Faculty of Medicine

Ain Shams University

Prof. Sawsan Aboul-Fotouh El-Said

Professor of Clinical Pharmacology

Faculty of Medicine

Ain Shams University

Prof. Azza Abdel-Moneim Attia Assist. Prof. Yasser Abdel-Hakim El-faramawy

Professor of Histology

Faculty of Medicine

Ain Shams University

Assist. Consultant of Geriatric Medicine

Faculty of Medicine

Ain Shams University

Dr. Sherin Shafik Tawfik

Lecturer of Clinical Pharmacology
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2018

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Ahmed**M.Abdel-tawab, Professor of Clinical Pharmacology, Faculty of Medicine, Ain

Shams University, for his supervision, continuous help, encouragement throughout this work; I'm really so proud to work under his guidance and supervision.

I would like to express my sincere appreciation to **Prof. Sawsan**Aboul-fotouh El-said, Professor of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help throughout the whole work and tremendous effort she has done in the meticulous revision of the whole work.

This work would not have come out without the continuous help provided by Assist. Prof. Yasser Abdel-hakim El-faramawy, Assistant Consultant of Geriatric Medicine, Faculty of Medicine, Ain Shams University, it is a great honor to work under his guidance and supervision.

I would like to thank **Prof. Azza Abdel-Moneim Attia**, Professor of Histology, Faculty of Medicine, Ain Shams University, for providing her time and support to accomplish the histopathological studies.

I would like also to express my sincere appreciation and gratitude to **Dr.**Sherin Shafik Tawfik Lecturer of Clinical Pharmacology, Faculty of

Medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

I would like also to express my sincere appreciation and gratitude to Assist. Prof. Hekmat Mohamed El magdoub, Assistant Professor of Biochemistry, Faculty of Pharmacy, Misr International University for providing her time and support for the accomplishment of the biochemichal studies.

I wish to thank my colleagues **Prof. Nevine Bahaa**, Professor of Histology, Faculty of Medicine, Ain Shams University, and my colleagues **Mai Ahmed** and **Ahmed Mostafa** for the huge efforts and continuous help they have done to accomplish this study.

Last but not least, I dedicate this work to my family, my wife and my lovely children whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Mohamed Habib

List of contents

Chapters	Content	Pages
1	List of tables	V
2	List of figures	VII
3	List of abbreviations	X
4	Introduction & aim of the work	2
5	Review of Literature	8
6	Materials and Methods	39
7	Results	66
8	Discussion	131
9	Summary and conclusion	146
10	Abstract	157
11	References	160
13	Arabic summary	

List of tables

Table	Title	Pages
1	Functions of microglia	14-15
2	Markers of M1 and M2 activated microglia	21
3	Schedule of stressors application during a period of one week	44
4	Effects of CMS versus LPS/CMS models on body weight	68
5	Effects of CMS versus LPS / CMS model in Wistar rats on sucrose preference test	70
6	Effects of CMS versus LPS / CMS model on forced swimming test (FST) in Wistar rats	71
7	Effects of CMS versus LPS / CMS model on open field test (OFT) in Wistar rats	73
8	Effects of CMS versus LPS / CMS model on serum corticosterone in Wistar rats	76
9	Effects of CMS versus LPS / CMS model on hippocampal protein expression of Wnt-3A by western blot	78
10	Effects of CMS versus LPS / CMS model on hippocampal protein expression of DVL-3 by western blot	79
11	Effects of CMS versus LPS / CMS model on hippocampal protein expression of GSK-3ß by western blot	80
12	Effects of CMS versus LPS / CMS model on hippocampal protein expression of β-Catenin by western blot	82
13	Effects of CMS versus LPS / CMS model on NF-κB, TNF-α and IL-1β in Wistar rats	84
14	Effects of CMS versus LPS / CMS model on Iba-1 immuno-reactivity	88

List of tables (cont.)

Table	Title	Pages
15	Effects of lithium chloride on body weight in rats exposed to CMS vs. LPS/CMS	91
16	Effects of lithium chloride on sucrose preference test in rats exposed to CMS vs. LPS/CMS	94
17	Effects of lithium chloride on forced swimming test behavioral changes in rats exposed to CMS vs. LPS/CMS	97
18	Effects of lithium chloride on open field test behavioral changes in rats exposed to CMS vs. LPS/CMS	100
19	Effects of lithium chloride on serum corticosterone in rats exposed to CMS vs. LPS/CMS	104
20	Effects of lithium chloride on hippocampal protein expression of Wnt-3A by western blot in rats exposed to CMS vs. LPS/CMS	108
21	Effects of lithium chloride on hippocampal protein expression of DVL-3 by western blot in rats exposed to CMS vs. LPS/CMS	111
22	Effects of lithium chloride on hippocampal protein expression of GSK-3ß by western blot in rats exposed to CMS vs. LPS/CMS	114
23	Effects of lithium chloride on hippocampal protein expression of \(\mathcal{B}\)-Catenin by western blot in rats exposed to CMS vs. LPS/CMS	117
24	Effects of lithium chloride on hippocampal NF-κB, TNF-α and IL-1β in wistar rats exposed to CMS vs. LPS/CMS	120
25	Effects of lithium chloride on Iba-1 immuno-reactivity in rats exposed to CMS vs. LPS/CMS	128

List of figures

Figure	Title	Page	
1	Microglial activation in human brain	16	
2	Microglial activation phenotypes	19	
3	The canonical Wnt/ β-catenin pathway	23	
4	Diagram of study design in LPS/CMS and CMS models	42	
5	Forced Swimming Test	46	
6	Sucrose Preference Test	47	
7	Open Field Test	48	
8	Effects of CMS versus LPS/CMS models on body weight.	69	
9	Effects of CMS versus LPS / CMS model in Wistar rats	70	
9	on sucrose preference test	70	
10	Effects of CMS versus LPS / CMS model on forced	72	
10	swimming test (FST) in Wistar rats	12	
11	Effects of CMS versus LPS / CMS model on open field	74-75	
11	test (OFT) in Wistar rats	74 75	
12	Effects of CMS versus LPS / CMS model on serum	76	
12	corticosterone in Wistar rats	/0	
	protein levels of Wnt-3A, DVL-3, total and		
13	phosphorylated GSK-3β, total and phosphorylated β-	77	
13	catenin in hippocampal homogenates by Western blot	,,,	
	technique		
14	Effects of CMS versus LPS / CMS model on hippocampal	78	
	protein expression of Wnt-3A by western blot	70	
15	Effects of CMS versus LPS / CMS model on hippocampal	79	
13	protein expression of DVL-3 by western blot	13	

List of figures (cont.)

Figure	Title	Page
16	Effects of CMS versus LPS / CMS model on hippocampal protein expression of GSK-3ß by western blot	81
17	Effects of CMS versus LPS / CMS model on hippocampal protein expression of β-Catenin by western blot	83
18	Effects of CMS versus LPS / CMS model on NF- κ B, TNF- α and IL-1 β in Wistar rats	85
19	Effects of CMS versus LPS/CMS on hippocampal microglial activity in wistar rat	86-87
20	Effects of CMS versus LPS / CMS model on Iba-1 immuno-reactivity	88
21	The effects of lithium chloride on body weight in rats exposed to CMS vs. LPS/CMS	92
22	The effects of lithium chloride on sucrose preference test in rats exposed to CMS vs. LPS/CMS	95
23	The effects of lithium chloride on forced swimming test behavioral changes in rats exposed to CMS vs. LPS/CMS	98
24	The effects of lithium chloride on open field test behavioral changes in rats exposed to CMS vs. LPS/CMS	101- 102
25	The effects of lithium chloride on serum corticosterone in rats exposed to CMS vs. LPS/CMS	105
26	protein levels of Wnt-3A, DVL-3, total and phosphorylated GSK-3B, total and phosphorylated B-catenin in hippocampal homogenates by Western blot technique	106

List of figures (cont.)

Figure	Title	Page
27	The effects of lithium chloride on hippocampal protein expression of Wnt-3A by western blot in rats exposed to CMS vs. LPS/CMS	109
28	The effects of lithium chloride on hippocampal protein expression of DVL-3 by western blot in rats exposed to CMS vs. LPS/CMS	112
29	The effects of lithium chloride on hippocampal protein expression of GSK-3ß by western blot in rats exposed to CMS vs. LPS/CMS	115
30	The effects of lithium chloride on hippocampal protein expression of \(\mathbb{B}\)-Catenin by western blot in rats exposed to CMS vs. LPS/CMS	118
31	Effects of lithium chloride on hippocampal NF- κ B, TNF- α and IL-1 β in wistar rats exposed to CMS vs. LPS/CMS	121
32	Effects of lithium chloride on hippocampal microglial activity in wistar rats exposed to CMS versus LPS/CMS model of depression	122- 126
33	The effects of lithium chloride on Iba-1 immuno-reactivity in rats exposed to CMS vs. LPS/CMS	129

List of abbreviations

5-HT	Serotonin
AD	Alzheimer's Disease
AMP	Adenosine Mono-Phosphate
APC	Adenomatous Polyposis Coli
ARG1	Arginase-1
BDNF	Brain Derived Neurotrophic Factor
Ca	Calcium
CCL3	Chemokine (C-C motif) ligand 3
CCL5	Chemokine (C-C motif) ligand 5
CCL8	Chemokine (C-C motif) ligand 8
CCL11	Chemokine (C-C motif) ligand 11
CCL14	Chemokine (C-C motif) ligand 14
CCL15	Chemokine (C-C motif) ligand 15
CCL17	Chemokine (C-C motif) ligand 17
CCL18	Chemokine (C-C motif) ligand 18
CCL19	Chemokine (C-C motif) ligand 19
CCL20	Chemokine (C-C motif) ligand 20
CCL22	Chemokine (C-C motif) ligand 22
CCL23	Chemokine (C-C motif) ligand 23
CCL24	Chemokine (C-C motif) ligand 24
CD16	Cluster of Differentiation 16
CD32	Cluster of Differentiation 32
CD 36	Cluster of Differentiation 36
CD163	Cluster of Differentiation 163
CD200	Cluster of Differentiation 200
CD206	Cluster of Differentiation 206

CD301	Cluster of Differentiation 301	
CK1-α	Casein Kinase 1-α	
CMS	Chronic Mild Stress	
CNS	Central Nervous System	
Cox-2	Cyclo-oxygenase-2	
CXCL1	Chemokine (C-X-C motif) ligand 1	
CXCL10	Chemokine (C-X-C motif) ligand 10	
CXCL11	Chemokine (C-X-C motif) ligand 11	
CXCL13	Chemokine (C-X-C motif) ligand 13	
DA	Dopamine	
DAMPs	damage associated molecular patterns	
DKK-1	Dickkopf-related protein 1	
DVL	Disheveled	
DVL-1	Disheveled-1	
DVL-2	Disheveled-2	
DVL-3	Disheveled-3	
ELISA	Enzyme Linked Immunosorbent Assay	
FB	Foreign Body	
FST	Forced Swimming Test	
FWD	Food and Water Deprivation	
FZD	Frizzled	
GSK-3	Glycogen Synthase Kinase-3	
GSK-3 β	Glycogen Synthase Kinase-3 β	
HCV	Hepatitis C Virus	
HPA axis	Hypothalamo-Pituitary-Adrenal axis	
Iba-1	Ionized calcium binding adaptor molecule 1	

IFN-γ	Interferon- γ
IL-1	Interleukin-1
IL-1β	Interleukin-1β
IL-1RA	Interleukin-1RA
IL-2	Interleukin-2
IL-4	Interleukin-4
IL-4Rα	Interleukin-4Rα
IL-6	Interleukin-6
IL-8	Interleukin-8
IL-10	Interleukin-10
IL-12	Interleukin-12
IL-13	Interleukin-13
IL-15	Interleukin-15
IL-17	Interleukin-17
IL-18	Interleukin-18
IL-23	Interleukin-23
IGF1	Insulin-like growth factor 1
IkB	Inhibitor of kappa binding
IMP	Inositol mono-phosphate
iNOS	inducible nitric oxide synthase
i.p.	Intra-peritoneal
LDL	Low Density Lipoprotein
LEF/TCF	Lymphoid Enhancer Factor/T Cell Factor
Li Cl	Lithium Chloride
LPS	Lipopolysaccharide
LPS/CMS	Lipopolysaccharide then chronic mild stress model

LRP5/6	LDL Receptor-related Protein 5/6
MDD	major depressive disorders
МНС	Major Histo-comptability Complex
MHC II	Major Histo-comptability Complex 2
MMPs	Matrix Metalloproteinases
NF-kB	Nuclear Factor kappa B
NMDA	N-methyl-D-aspartate
NO	nitric oxide
OFT	Open Field Test
PAMPs	pathogen associated molecular patterns
PBS	Phosphate Buffered Saline
PPARγ	Peroxisome proliferator-activated receptor γ
PRRs	pattern recognition receptors
PS-DVL	phosphorylated and shifted Dishevelled
SPT	Sucrose Preference Test
TGF-ß	Transforming growth factor-ß
TLE	Transducin-like enhancer
TLR-2	Toll-like receptor-2
TLR-4	Toll-like receptor-4
TNF-α	Tumour Necrosis Factor- α
vPFC	ventral Pre-Frontal Cortex
WHO	World Health Organization
Wnt	wingless-related integration site
Wnt-1	wingless-related integration site-1
Wnt-2	wingless-related integration site-2
Wnt-3A	wingless-related integration site-3A

Wnt-5A	wingless-related integration site-5A	
Wnt-7A	wingless-related integration site-7A	
Wnt-8A	wingless-related integration site-8A	
Wnt-8B	wingless-related integration site-8B	

Introduction and Aim of the work

