

Assessment of Groundwater Resources in the area east of Qattara Depression, North Western Desert, Egypt- using Hydrogeological and Isotope Techniques

A Thesis Submitted for Master degree of Science of Geology (Hydrogeology)

By

Moaz Mohamed Abd El Ghany Sayed

B. Sc. in Geology, Ain Shams University

Supervisors

Prof. Dr. / Ezzat Ali Korany Professor of Hydrogeology Faculty of Science Ain Shams University

Dr. / Samah Mahmoud Morsy Lecturer of Hydrogeology Faculty of Science Ain Shams University

Assoc. Prof/ Salah Abdel Wahab El Sayed
Assoc. professor of Hydrogeology
The Egyptian Nuclear and Radiological Regulatory authority
ENRRA.

Geology Department Faculty of Science Ain Shams University

Approval Sheet

Assessment of Groundwater Resources in the area east of Qattara Depression, North Western Desert, Egypt- using Hydrogeological and Isotope Techniques

By

Moaz Mohamed Abd El Ghany Sayed

B. Sc. in Geology, Ain Shams University

A Thesis Submitted
For the fulfillment of the M.Sc. Degree in Geology

Geology Department Faculty of Science Ain Shams University

Supervisors

Prof. Dr. / Ezzat Ali Korany Professor of Hydrogeology, Faculty of Science, Ain Shams University

Dr. / Samah Mahmoud Morsy Lecturer of Hydrogeology, Faculty of Science, Ain Shams University

Assoc. Prof/ Salah Abdel Wahab El Sayed Assoc. professor of Hydrogeology, The Egyptian Nuclear and Radiological Regulatory authority, ENRRA.

Prof.Dr. Ali Farrag

Head of Geology Department Faculty of Sciences Ain Shams University

Note

The present thesis is submitted by Moaz Mohamed Abd El Ghany Sayed to Faculty of Science, Ain Shams University in partial fulfillment of the degree of Master of Science in Geology. Beside the research work materialized in this thesis, the candidate has attended postgraduate courses covering the following topics:

- 1. Field Geology.
- 2. Geostatistics.
- 3. Sedimentation.
- 4. Sedimentary Petrology.
- 5. Structural Geology.
- 6. Hydrogeology.
- 7. Hydrodynamics.
- 8. Lithostratigraphy.
- 9. Physical Properties of Rocks.
- 10. Formation Evaluation.
- 11. English Language.

He has successfully passed the final examination of these courses.

Head of Geology Department

Prof. Dr. Ali Farrag

ACKNOWLEDGMENT

Thanks to **Allah**, the most merciful and compassionate, for giving me the strength and effort to complete this thesis.

My deepest gratitude and appreciation to **Prof. Dr. Ezzat Ali Korany**, Geology Department, Faculty of Science, Ain Shams University, For supervision, continuous support, encouragement and careful review of the present work.

My deepest gratitude and appreciation to **Dr. Salah Abd El Wahab**, Assoc Prof of Hydrogeology, The Egyptian Nuclear and Radioloical Regularoty authority, (ENRRA), For supervising, continous support, encouragement, and helping in the field trip and helping in applying techniques.

My deepest gratitude to **Dr. Samah Mahmoud Morsy,** Geology Department, Faculty of Science, Ain Shams University for supervising the work, supporting and continous valuable discussions.

A special thanks to my father, mother and all family members for their kind help during the progress of this work.

Abstract

The present work aims to assess the groundwater resources in the area lying east of Qattara Depression by using hydrogeological and isotopic techniques. The following geomorphic units are distinguished: Ridges, Depressions, Marmarica Tableland and Sand dunes.

The groundwater is available in the Moghra (Lower Miocene) aquifer. It exists under unconfined to semi confined conditions. The water bearing rocks are built of fluviomarine sandstones with intercalations of clays. The groundwater are recharged from different sources and flow in all directions. The structural framework greatly controls the recharge mechanism of the aquifer.

Using the hydrogeological, chemical and isotopic criteria, five sources of groundwater are distinguished: Sea water, Direct rainfall on the outcrops, Quaternary aquifer of Nile Delata from East, Nubia Sandstone Aquifer System by upward flow and Post Moghra aquifers by downward flow.

The groundwater has brackish to saline character. They are influenced by geochemical process and evaporation. They are suitable for few purposes.

List of Contents

	Page
Acknowledgement	ii
Abstract	iii
Introduction	1
General outlines	1
Location of the Study Area	2
Scope and Targets of the Present Work	3
Methodology and Techniques	3
Review of previous work	6
CHAPTER (I)	
GEOMORPHOLOGICAL FEATURES AND GREETING	EOLOGIC
Regional Geomorphological Features	11
1. Structural Ridges	12
a. El Washeika Ridge	12
b. El Qantara Ridge	12
c. El Manaquer Ridge Series	12
2. Heneishat Sand Dune Chains	13
3. Marmarica Tableland	13
4. Structural Depressions	15

Content	page
a. Qattara Depression	15
b. Moghra Depression	15
c. Nakhlet El Barraq Structural Depression	16
Local Geomorphological Features	16
GEOLOGICAL SETTING	20
1) Lithostratigraphic Succession	20
Subsurface section	20
a) Nubia Sandstone sequence	21
b) Mesozoic Clastic Sequence	21
c) Tertiary carbonates sequence	22
Surface Section	22
Miocene Rock Units	22
1. Moghra Formation	23
a. El Raml Member	24
b. Bait Owian Member	24
c. Monquar El Dowi Member	24
2. Marmarica Formation	24
Pliocene Rock Units	25
1. Wadi El Natrun Formation	26
1.a Muluk Member	26
1.b Solymanya Member	26
2. Hagif Formation	26
Quaternary Deposits	27

Content	page
Quaternary Soils	27
Soil Analysis – Grain size Analysis	27
1. Graphical presentation of grain size data	28
1.a. Histograms	28
1.b. Cumulative Curves	29
2.Grain size parameters	30
2.a. Mean Size (Mz)	32
2.b. Inclusive Graphic Standard Deviation (σ_I)	33
2.c. Inclusive Graphic Skewness (Sk)	34
2.d. Graphic Kurosis (Kg)	35
2) Geologic Structures	36
Local Structure features	36
Folds	36
1. NE-SW fold system (Syrian arc)	37
2. NW-SE fold systems	37
2.a. Monqar El Dowi – Gebel Hagif syncline.	37
2.b. Wadi El Tarfaya anticline	37
Faults	38
1. NE – SW Fault system	38
1.a. Al A'alam Fault	38
1.b. Gebel El Shassa fault	38

Content	page
2. NW – SE Fault system	38
2.a. Monqar El Rmal Fault	38
2.b. Nakhlet El Barraq fault	38
3. E – W Fault system	39
Subsurface Faults	39
CHAPTER (II):	42
HYDROGEOLOGICAL CONDITIONS	
General Outline	42
Climatic conditions	42
Moghra Aquifer System	43
Aquifer Characteristics	44
a- Groundwater occurrence	44
b- Flow System	47
c- Hydrologic properties of Moghra Formation	51
d. Permeability estimated from grain size	51
e- Analysis of Infiltration Test	55
CHAPTER (III):	59
Hydrogeochemical Characteristics And Environmental	Isotopes
Groundwater sampling	59
1) Hydrochemical Characteristics:	60
1.1. Groundwater salinity (TDS)	60