USING GREEN INFORMATION TECHNOLOGY AS A SAFE APPROACH TO SOLVE THE PROBLEMS OF ENVIRONMENTAL POLLUTION WHICH IS DUE TO ELECTRONICS WASTES

Submitted By

Mohamed Ahmed Zaki Farahat

B.Sc. of Electrical Engineering, Faculty of Engineering, Banha University, 2007 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

2018

APPROVAL SHEET

USING GREEN INFORMATION TECHNOLOGY AS A SAFE APPROACH TO SOLVE THE PROBLEMS OF ENVIRONMENTAL POLLUTION WHICH IS DUE TO ELECTRONICS WASTES

Submitted By Mohamed Ahmed Zaki Farahat

B.Sc. of Electrical Engineering, Faculty of Engineering, Banha University, 2007 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences This thesis Towards a Master Degree in Environmental Sciences Has been Approved by:

Name Signature

1- Prof. Dr. Salwa Hussein Abdel Fattah Ramly

Emeritus Prof., of Electronics & Communications Engineering Faculty of Engineering Ain Shams University

2- Prof. Dr. Mohamed Abd El Aziz Khalifa

Prof. of Accounting and Auditing Faculty of Commerce Ain Shams University

3- Prof. Dr. Noha Samir Donia

Prof. of Environmental Engineering and Head of Department of Environmental Engineering Sciences - Institute of Environmental Studies and Research Ain Shams University

4- Prof. Dr. Medhat Ahmed Abdel Aal

Prof. of Statistics Faculty of Commerce Ain Shams University

2018

USING GREEN INFORMATION TECHNOLOGY AS A SAFE APPROACH TO SOLVE THE PROBLEMS OF ENVIRONMENTAL POLLUTION WHICH IS DUE TO ELECTRONICS WASTES

Submitted By

Mohamed Ahmed Zaki Farahat

B.Sc. of Electrical Engineering, Faculty of Engineering, Banha University, 2007 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Engineering Sciences

Under The Supervision of:

1- Prof. Dr. Salwa Hussein Abdel Fattah Ramly

Emeritus Prof., of Electronics & Communications Engineering Faculty of Engineering Ain Shams University

2- Prof. Dr. Mohamed Abd El Aziz Khalifa

Prof. of Accounting and Auditing
Vice Dean of Faculty of Commerce & Head of Department of Environmental
Economics, Legal and Management Sciences
Institute of Environmental Studies and Research
Ain Shams University

Acknowledgment

First and foremost, I am thankful to ALLAH, the most compassionate, the most merciful, for helping and giving me support to complete this work.

I would like to thank all my Professors who taught me in Institute of Environmental Studies and Research Ain Shams University.

Also I would like to thank the supervisors for my thesis work, from whom I learned a lot of things; I would like to thank them for their help, guidance and Suggestions.

Finally I would like to thank my family for their support and encouragement during the thesis work.

Abstract

This thesis, different types of electronic components and their combinations were studied from different elements to be used, but at the end of their life there are many problems to get rid of them, some of which are harmful waste. The letter will review these problems and their environmental effects. It will also review the efforts exerted in this regard by different countries and review some of the efforts in Egypt. Recommendations were also made to those concerned to protect the environment from the harmful effects of electronic waste.

Electronic waste is an increasing problem globally due to the quick replacements of electronic devices and components. E-waste includes discarded electronic appliances such as mobile phone, computers, and televisions etc.

E-waste consists of a large variety of materials, some of which contain a range of toxic substances that can contaminate the environment and threaten human health if not appropriately managed. E-waste disposal methods include landfill and incineration, both of which pose considerable contamination risks.

Proper methods of waste disposal have to be undertaken to ensure that it does not affect the environment around the area or cause health hazards to the people living there.

Information Technology (IT) offers many benefits including increased productivity, access to information, and convenience. Green IT enhances the sustainability of computing through manufacturing lower impact materials and products, reduced energy consumption of data

centers and computers, and better recycling and end of life management.

Overall, the effects of GIT through effective use of E-waste management are all positives. Implementing E-waste management in the environment provides society's needs in ways that do not damage or deplete natural resources. Mainly this means creating fully recyclable products, reducing pollution, proposing alternative technologies in various fields, and creating a center of economic activity around technologies that benefit the environment.

List of Contents

Title Pag	ge No.
List of Tables	VI
List of Figures	VII
List of Abbreviations	VIII
List of Symbols	X
Introduction	. 1-21
1- Thesis Motivation	1
2- Problem Statement	2
3- Thesis Overviews	3
4- Thesis Contribution	4
Chapter 1: Electronic wastes	6-21
1.1 What are E-Wastes?	6
1.2 E-Wastes Generation Globally	8
1.3 E-waste Composition	10
1.4 Humanoid poisonousness of dangerous materials in E-waste and environmental effect	12
1.5 Present Confrontations for E-Waste Elimination	19
1.6 Conclusion	21
Chapter 2: Green Information Technology	22-28
2.1 Introduction	22
2.2 Definitions	22
2.3 History	23
2.4 Current scenario of green computing	24

Title Page I	
2.5 Green information technology Advantages	25
2.6 Greening Information Technology (GIT) Initiatives	25
2.7 Composition of IT and impact on the environment	26
2.8 Green Information Technology Standards & Regulations	27
2.8.1 Energy Star 4.0 Standard	27
2.8.2 W.E.E.E Law	28
2.9 Conclusion	28
Chapter 3: Effective solutions for E- waste problem	29-57
3.1 Introduction	29
3.2 Economic Significance of E-waste Recycling Model	29
3.3 Closed Material Loop Manufacturing Model	30
3.4 End-of-Life Options for electronic waste	32
3.5 E-waste Recycling Data Collation	35
3.6 List Ceramic CPU's that have the highest gold content	37
3.7 Recycling practice	38
3.8 Chemical Leaching mechanism of metals from E-waste	39
3.9 Biological Leaching of E-waste	40
3.10 Complex E-waste treatment	42
3.11 Recovery of worthy materials from waste liquid crystal display panel	44
3.12 Environmentally sound management of E- waste	46
3.13 1st Level Treatment	48

Title Page N	
3.13.1 Decontamination	49
3.13.2 Dismantling	49
3.13.3 Segregation	49
3.13.4 Output	49
3.14 2nd Level Treatment	49
3.14.1 Input	49
3.14.2 Unit Operations	50
3.14.3 Process	50
3.15 3rd Level E-waste Treatment	51
3.15.1 Plastic Recycling	52
3.15.2 Recycling options for managing plastics from end-of-life Electronics	52
3.15.3 Chemical Recycling Process	52
3.16 The Solution is Green	52
3.17 Life Cycle Assessment (LCA)	54
3.18 Conclusion	57
Chapter 4: Assessment of E-wastes disposal system in the Middle East and North Africa	58-68
4.1 Introduction	58
4.1.1 WEEE Management in Middle East and North Africa	59
4.2.1 Bahrain	59
4.2.2 Kuwait	59
4.2.3 Oman	60

Title Pag	ge No.
4.2.4 Qatar	61
4.2.5 Saudi Arabia	61
4.2.6 United Arab Emirates	62
4.2.7 Jordan	62
4.2.8 Egypt	63
4.2.9 Algeria	64
4.2.10 Morocco	64
4.2.11 Tunisia	64
4.2.12 Yemen	64
4.2.13 Syria	65
4.3 Current WEEE Management Rating	65
4.4 Common Themes across the Region	66
4.5 Conclusion	68
Chapter 5: Study about E-Waste management in Egypt	69-85
5.1 Introduction	69
5.2 The Ministry of Environment management projects	69
5.2.1 Sustainable Recycling Industries (SRI)	69
5.2.1.1 Building technology companies	70
5.2.2 United Nation Development Program (UNDP)	70
5.3 Companies work in E-waste management in Egypt	70
5.3.1 International technology group (ITG)	70
5.4 RecycloBekia	77

Title Page N	
5.4.1 Recycling Stage	77
5.4.2 Collecting	77
5.4.3 Sorting/Dismantling	77
5.4.4 Packaging	78
5.4.5 Refining	78
5.5 Nasreya Hazardous Waste treatment center for Final & Safe Destination of Hazardous Waste in Alexandria	78
5.5.1 The site consists of	79
5.5.2 Create a database of hazardous waste	81
5.5.3 Expected results of the project	81
5.6 Conclusion	85
Conclusion Recommendations	86-89
1 Conclusions	86
2 Recommendations	87
2.1 Government Organisations Recommendations	87
2.2 Non-Governmental Organisations Recommendations	88
2.3 Local Inhabitants Recommendations	89
Summary	90
Doforonaes	04

List of Figures

Fig No.	Title	Page No
Fig 1.1	The distribution of global e-waste generated by region with European Union having the largest section followed by North America, China, India, Australia and the rest of the world (ROW) Respectively	9
Fig 1.2	Proportion of different E-wastes types in its global physical composition	11
Fig 1.3	Percentage of chemical constitutes in the total weight Practices	12
Fig 3.1	Global Sales Projections for E-waste recycling by Type of Materials	30
Fig 3.2	Closed material loop manufacturing with recycling	32
Fig 3.3	E-waste Processing Steps	33

List of Tables

Table No.	Title	Page No.
Table 1.1	Concerted hazardous materials related to E-waste and their health effects	
Table 3.1	E-waste generated, disposed, and recycled for year 1999 through 2012	35
Table 3.2	E-waste recycled for year 1999 through 2012 with the Revenue generated	36
Table 3.3	End-of-life Management for E-waste in the U.S.	37
Table 3.4	Summary of ESM components recommended by the existing guidelines	46

List of Abbreviations

AC	Alternative current.
APME	Association of Plastic Manufacturers in Europe.
BCRC	Basel Convention Regional Center.
BFR	Brominated flame retardant.
CD	Compact Disc.
CECP	China Energy Conservation Program.
CFC	Chlorofluorocarbon.
CNDRC	China National Development and Reform Commission.
CO2	Carbon dioxide.
CPU	Center Processing Unit.
CRT	Cathode Ray Tube.
CSE	Center for Science and Environment.
DSC	Differential Scanning Calorimetry.
DVD	Digital Versatile Disc.
DNA	Deoxyribonucleic Acid Genetic.
EDS	Energy Dispersed Spectroscopy.
EEE	Electrical and Electronic Equipment.
EERC	Egyptian Electronic Recycling Co.
EoL	End-of-life.
EPA	Environmental Protection Agency.
EPEAT	Electronic Product Environmental Assessment Tool.
etc	et cetera.
EU	European Union.
E-waste	Electronic Waste.
GHG	Green-House Gas.
GIT	Greening Information Technology.
GPS	Global Positioning System.
ICC	International Computer Company.

AC	Alternative current.
ICT	Information and Communications Technology.
IFG	International Federation of Green.
IT	Information Technology.
ITG	International Technology group.
JES	Jordan Environment Society.
LCA	Life Cycle Assessment.
LCD	Liquid-Crystal Display.
MAIT	Manufacturers' Association for Information Technology.
MENA	Middle East and North Africa.
MoE	The Ministry of Education.
MSW	Municipal Solid Waste.
NDRC	National Development and Reform Commission.
NGOs	Non-Governmental Organizations.
OECD	Organisation for Economic Co-operation and Development.
OEMs	Original Equipment Manufacturer.
PC	Personal Computers.
PP	Paper Page.
ROW	Rest of World.
SEM	Scanning Electron Microscopy.
SRI	Sustainable Recycling Industries.
TV	Television.
UAE	The United Arab Emirates
UNDP	United Nation Development Program.
US	United States.
USB	Universal Serial Bus.
USEPA	United States Environmental Protection Agency.
VCR	Video Cassette Recording.
WEEE	Waste Electrical and Electronic Equipment.
XRF	X-ray Fluorescence Spectrometry.