

EXPERIMENTAL INVESTIGATION FOR THE INFLUENCE OF NANOPARTICLES ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

By

Omar Ahmed Mohamed AbdelLatif Mazen

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

EXPERIMENTAL INVESTIGATION FOR THE INFLUENCE OF NANOPARTICLES ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

By

Omar Ahmed Mohamed AbdeLatif Mazen

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Prof. Dr. Fatma El-Zahraa Ashour

Prof. Dr.Mamdouh Ayad Gadalla

Professor of Chemical Engineering
Chemical Engineering
Faculty of Engineering, Cairo University

Professor of Chemical Engineering Chemical Engineering Faculty of Engineering, Portsaid University

EXPERIMENTAL INVESTIGATION FOR THE INFLUENCE OF NANOPARTICLES ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

By **Omar Ahmed Mohamed Abdelatif Mazen**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Chemical Engineering

Approved by the Examining Committee

Prof.Dr.Fatma El Zharaa Ashour

Thesis Main Advisor

Prof.Mamdouh Ayad Gadalla

Advisor

- Head of Chemical Engineering , Faculty of Engineering, Portsaid University
Prof.Dr.Magdy Fouad Abadir
Internal Examiner

Prof.Dr.Mohamed Amin Elshahir Sadek

External Examiner

 Vice Dean for Research and Postgraduates studies, Head of Chemical Engineering- Faculty of Engineering at The British University in Egypt **Engineer's Name:** Omar Ahmed Mohamed Abdelatif Mazen

Date of Birth: 23/09/1991 **Nationality:** Egyptian

E-mail: Chemical_Engineer@live.com

Phone: 01149091855

Address: 72 Hafez Badwy street-7th District-Nasr City-Cairo

Registration Date: 01/03/2015
Awarding Date:/..../2018
Degree: Master of Science
Department: Chemical Engineering

Supervisors:

Prof. Fatma El Zahraa Ashour. Prof. Mamdouh Ayad Gadallah.

- Head of Chemical Engineering, Faculty of

Engineering, Portsaid University

Examiners:

Prof. Mohamed Amin El Shahir Sadek (External examiner)

 Vice Dean for Research and Postgraduates studies, Head of Chemical Engineering- Faculty of Engineering at The British University in Egypt

Prof. Magdy Fouad Abadir (Internal examiner)
Prof. Fatma El Zahraa Ashour
Prof. Mamdouh Ayad Gadalla (Advisor)

- Head of Chemical Engineering, Faculty of Engineering, Portsaid University

Title of Thesis:

EXPERIMENTAL INVESTIGATION FOR THE INFLUENCE OF NANOPARTICLES ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

Key Words:

Nanoparticles additives; Diesel Engine; Emissions; TiO₂; CuO

Summary:

TiO₂ and CuO nanoparticles are investigated as potential additives to diesel fuel to reduce emissions and enhance engine performance. Various concentrations of nanofuels are examined under different loads to accurately determine their influence in combustion process. The measured emissions are CO, CO₂, NO, O₂, unburned HC meanwhile the mechanical parameters are BSFC, brake power, RPM, thermal efficiency and exhaust temperature. It is worth mentioning that the experimental work was conducted on two conditions; cold start and hot start.

Insert photo here

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources and have cited them in the reference section.

Name: Omar Ahmed Mohamed Abdelatif Mazen Date: 25.09.2018

Signature:

Acknowledgments

In the Name of Allah, the Most Merciful, the Most Compassionate all praise be to Allah, the Lord of the worlds; and prayers and peace be upon Mohamed His servant and messenger. First and foremost, I must acknowledge my limitless thanks to Allah, the Ever-Magnificent; the Ever-Thankful, for His help and bless. I am grateful to some people, who worked hard with me from the beginning till the completion of the present research particularly my mother for her continuous support, guidance and inspiration. Second my supervisors Prof.Fatma, Prof.Mamdouh and Dr.Tarek who have been always generous during all phases of the research, and I highly appreciate their efforts. Morever I would like to express my gratitude to Chemical and Mechanical Engineering departments in BUE as they helped me a lot during the experimental work in addition to chemist Dr.Ahmed Azazy working in scientific and technology centre of excellence. I would like to take this opportunity to say warm thanks to all my beloved friends, who have been so supportive along the way of doing my thesis. I also would like to express my wholehearted thanks to my family for their generous support they provided me throughout my entire life and particularly through the process of pursuing the master degree. Because of their unconditional love and prayers, I have the chance to complete this thesis.

Dedication

I dedicate this thesis to my parents; Ahmed Mohamed Abdelatif Mazen and Azza Zaki Zaki and my finace Aya Alaaeldein whose love, unselfish and continuous support laid the foundations for discipline and application necessary to complete this work. Also I would like to dedicate this work to my supervisors Prof.Fatma Ashour and Prof.Mamdouh Ayad and Dr. Tarek Mohamed for their contributions and care.

Table of Contents

DISCLAIMER	I
ACKNOWLEDGMENTS	II
TABLE OF CONTENTS	IV
LIST OF TABLES	VII
LIST OF FIGURES	VIII
NOMENCLATURE	
ABSTRACT	
CHAPTER 1 : INTRODUCTION	
1.1.Introduction to Nanofluids	1
1.1.1.Nanofluids Research.	
1.1.2.Production of Nanofluids and Nanoparticles	
1.1.3.Two step process.	
1.1.4.One step process	
1.1.5.Cerium Oxide Nanoparticles	
1.1.6.Aluminium oxide Nanoparticles	
1.1.7.Magnesium-Aluminium and Cobalt Oxide Nanoparticles	
1.1.8.Environmental Impact of Nanoadditives	
1.2.COMBUSTION ASPECTS OF VARIOUS NANOPARTICLES DOPED ON LIQUID FUELS.	
1.3.Problem statement.	
1.4.Organization of work	
CHAPTER 2 :LITERATURE REVIEW	10
2.1.Crude oil.	10
2.1.1.Paraffins & Iso paraffins	11
2.1.2.Olefins	
2.1.3.Aromatics	12
2.1.4.Sulphur compounds	12
2.1.5.Oxygen Compounds	12
2.1.6.Nitrogen compounds	13
2.1.7.Metallic compounds	13
.2.1.8Asphaltenes and Resins	14
2.2.DIESEL FUEL AND ITS PHYSICAL PROPERTIES	16
2.2.1.Viscosity	17
2.2.2.Sulphur	
2.2.3.Cold flow properties	
2.2.4.Cetane number	19
2.2.5.Cetane Index	19
2.2.6.Diesel Index	19
2.2.7. Water Haze	20

2.3.DIESEL FUEL EMISSIONS	20
2.3.1.Diesel Particulate matter	22
2.3.2.Carbon Dioxide	22
2.3.3.Carbon Monoxide	22
2.3.4.Nitrogen oxides	22
2.3.5.Hydrocarbons	23
2.4.EXHAUST GASES IMPACT ON HUMAN'S HEALTH	23
2.5.DIESEL STORAGE STABILITY	25
2.5.1.Oxidation test stability	26
2.5.2.Metal deactivators	26
2.5.3.Antioxidants	26
2.6.DIESEL ENGINES	26
2.6.1.Specifications for diesel fuel	27
2.6.2.Theory of CI engines	27
2.7.Euro 6 limits for light-duty vehicles	28
2.8.OXYGENATED ADDITIVES TO DIESEL FUEL AND IT'S ROLE	29
2.8.1.Methanol	30
2.8.2.Ethanol	30
2.8.3.Butanol	31
2.9.DIESEL FUEL ADDITIVES	32
2.9.1.Cetane improvers	32
2.9.2.Pour point depressants	32
2.9.3.Antistatic additives.	33
2.9.4.Lubricity improvers	33
2.10.Diesel blending.	33
CHAPTER 3 :EXPERIMENTAL MATERIALS AND METHODS	35
3.1.PREPARATION AND CHARACTERISTICS OF NANO-PARTICLES	35
3.1.1.Characterization of Nanoparticles	
3.2.DIESEL FUEL SPECIFICATIONS	
3.3.PREPARATION OF NANOFUEL SAMPLES	37
3.3.1.Sonicator.	
3.4.ENGINE SPECIFICATIONS	39
3.4.1.Input Power:	
3.4.2.Engine Power:	40
3.5.GAS ANALYZER	
3.6.Homogenizer	43
3.7.Methodology	
CHAPTER 4 :RESULTS AND DISCUSSIONS	
4.1.MECHANISM OF NANOPARTICLES IN COMBUSTION PROCESS	
4.2.STABILITY OF NANODIESEL FUEL	
4.3.COST ANALYSIS OF NANODIESEL FUEL	
4.4.Conclusions.	96
REFERENCES	97

APPENDIX A: ONE APPENDIX	.10	1
--------------------------	-----	---

List of Tables

Table 2.1: Elemental Analysis of Crude Oil [25]	10
Table 2.2: Major Refining Processes in Modern Refineries [25]	15
Table 2.3: Crude Distillation Products [25]	15
Table 2.4: Diesel Fuel Specifications [25]	17
Table 2.5: Typical Emissions from Stationary Diesel Engines [29]	23
Table 2.6: EPA Standards for Year 2007 Onwards for Heavy-Duty Highway Diesel	
Engine Emissions [28]	26
Table 2.7: Euro Standard Emission for diesel engines [42]	29
Table 2.1: Diesel Fuel Blended Components [25]	34
Table 3.1: Characterization of Nanoparticles	35
Table 3.2: Physico-Chemical characteristics of Midor Diesel Fuel	37
Table 3.3: Specifications of Sonicator used in Experimental Work	39
Table 3.4: Diesel Engine Specifications	39
Table 3.5: Gas Analyzer Specifications	42
Table 3.6: Specifications of the used Homogenizer Equipment	43
Table 4.1: Output Variables for Optimum Samples and Diesel fuel	92
Table 4.2: Emissions of Diesel fuel According to Euro V Specifications for non Roa	ıd
Diesel Engines	93
Table 4.3: Advantage of nanodiesel fuel in the transportation sector	93
Table 4.4: Estimated price for optimum nanodiesel fuel	95
Table A.1: Midor Diesel fuel specifications	.101
Table A.2: Diesel fuel grades and classifications	.107

List of Figures

Figure 1.16: Annual Publications Related to Nanofluids Research [1]	2
Figure 2.3: Ethylene [25]	
Figure 2.4: Cyclo Hexane [25]	11
Figure 2.5: Methyl Benzene [26]	
Figure 2.6: Methyl Mercaptan [27]	.12
Figure 2.7: Thiophenol [27]	
Figure 2.8: Propanol [26]	13
Figure 2.9: Phenol [26]	
Figure 2.10: Pyridine [25]	13
Figure 2.11: Annual Consumption of Petroleum Products in Egypt	21
Figure 2.12: Annual Distillate Fuel Oil Consumption and Production in Egypt	21
Figure 2.13: EU Emissions for Heavy Duty Vehicles [42]	24
Figure 2.14: Health Effects of Diesel Exhaust Emissions [31]	25
Figure 2.15: Overview of the Main Health Effects on Humans from some Common	
Types of Pollutants [32]	
Figure 2.16: Combustion Cycle for Diesel Engines.	28
Figure 3.1: TEM for CuO and TiO ₂ Nanoparticles	36
Figure 3.2: Sonication Stages for CuO Nanodiesel Samples	38
Figure 3.3: Sonication stages for TiO ₂ Nanodiesel Samples	38
Figure 3.4: Diesel Engine used in Experimental Work	41
Figure 3.5: Diesel Engine Control Panel	
Figure 3.6: Load Applied to Diesel Engine from 0% to 100%	42
Figure 3.7: Gas analyzer	43
Figure 3.8: Homogenizer Equipment	43
Figure 3.9: Algorithm for Experimental Work	45
Figure 4.1: CO Variations with CuO Nanodiesel Fuel at Various Loads on Cold Star	
Conditions	46
Figure 4.2: CO Variations with TiO2 Nanodiesel Fuel at Various Loads on Cold Sta	rt
Conditions	
Figure 4.3: CO Variations with CuO Nanodiesel Fuel at Various Loads on Hot Start	
	48
Figure 4.5: CO ₂ Variations with CuO Nanodiesel Fuel at Various Loads on Cold Sta	
Conditions	49
Figure 4.6: CO2 variations with TiO2 nanodiesel fuel at various loads on cold start	
conditions.	
Figure 4.8: CO ₂ variations with TiO ₂ Nanodiesel Fuel at Various Loads on Hot Start	ī
Conditions	
Figure 4.10: NO Variations with TiO ₂ Nanodiesel Fuel at Various Loads on Cold St	art
Conditions	
Figure 4.11: NO Variations with CuO Nanodiesel Fuel at Various Loads on Hot Star	
Conditions	
Figure 4.12: NO Variations with TiO ₂ Nanodiesel Fuel at Various Loads on Hot Sta	rt
Conditions	
Figure 4.13: Unburned HC Variations with CuO Nanodiesel Fuel at Various Loads of	on
Cold Start Conditions.	56

Figure 4.14: Unburned HC Variations with TiO ₂ nanodiesel Fuel at Various Loads on
Cold Start Conditions
Figure 4.15: Unburned HC Variations with CuO Nanodiesel Fuel at Various Loads on
Hot Start Conditions
Figure 4.16: Unburned HC Variations with TiO ₂ Nanodiesel Fuel at Various Loads on
Hot Start Conditions
Figure 4.19: Excess O ₂ with CuO Nanodiesel Fuel at Various Loads on Hot Start
Conditions61
Figure 4.20: Excess O ₂ with TiO ₂ Nanodiesel Fuel at Various Loads on Hot Start
Conditions61
Figure 4.21: BSFC Variations with CuO Nanodiesel Fuel at Various Loads on Cold
Start Conditions
Figure 4.22: BSFC Variations with TiO ₂ Nanodiesel Fuel at Various Loads on Cold
Start Conditions
Figure 4.23: BSFC Variations with CuO Nanodiesel Fuel at Various Loads on Hot Start
Conditions. Figure 4.24: BSFC Variations with TiO ₂ Nanodiesel Fuel at Various Loads
on Hot Start Conditions64
Figure 4.25: Exhaust temperature with CuO nanodiesel fuel at various loads on cold
start conditions65
Figure 4.26: Exhaust Temperature with TiO ₂ Nanodiesel fuel at Various Loads on Cold
Start Conditions66
Figure 4.27: Exhaust Temperature with CuO Nanodiesel Fuel at Various Loads on Hot
Start Conditions67
Figure 4.28: Exhaust Temperature with TiO ₂ Nanodiesel Fuel at Various Loads on Hot
Start Conditions67
Figure 4.29: Brake Power Produced with CuO Nanodiesel Fuel at Various Loads on
Cold Start Conditions
Figure 4.30: Brake Power Produced with TiO ₂ Nanodiesel Fuel at Various Loads on
Cold Start Conditions
Figure 4.31: Brake Produced with TiO ₂ Nanodiesel fuel at Various Loads on Hot Start
Conditions. Figure 4.32: Brake Power Produced with CuO Nanodiesel Fuel at Various
Loads on Hot Start Conditions
Figure 4.35: RPM Produced with CuO Nanodiesel fuel at Various loads on Hot Start.
Figure 4.36: RPM Produced with TiO ₂ Nanodiesel Fuel at Various Loads on Hot Start
conditions
Figure 4.37: Efficiency of Diesel Engine with CuO Nanodiesel Fuel at Various Loads
on Cold Start Conditions
Figure 4.38: Efficiency of Diesel Engine with TiO ₂ Nanodiesel Fuel at Various Loads
on Cold Start Conditions
Figure 4.39: Efficiency of Diesel Engine with CuO Nanodiesel Fuel at Various Loads
on Hot Start Conditions. Figure 4.40: Efficiency of Diesel Engine with TiO ₂
Nanodiesel Fuel at Various Loads on Hot Start Conditions
Figure 4.41: Influence of Nanoparticles Concentrations on CO Variations at Maximum
Load on Cold Start Conditions
Figure 4.42: Influence of Nanoparticles Concentrations on CO Variations at Maximum
Load on Hot Start Conditions
Figure 4.43: Influence of Nanoparticles Concentrations on CO ₂ Variations at Maximum
Load on Cold Start Conditions. Figure 4.44: Influence of Nanoparticles Concentrations
on CO ₂ Variations at Maximum Load on Hot Start Conditions79

Figure 4.45: Influence of Nanoparticles Concentrations on NO Variations at maximum
Load on Cold Start Conditions80
Figure 4.46: Influence of Nanoparticles Concentrations on NO Variations at Maximum
Load on Hot Start Conditions81
Figure 4.47: Influence of Nanoparticles Concentrations on HC Variations at Maximum
Load on Cold Start Conditions. Figure 4.48: Influence of Nanoparticles Concentrations
on Unburned HC Variations at Maximum Load on Hot Start Conditions82
Figure 4.50: Influence of Nanoparticles Concentrations on Excess O ₂ at Maximum
Load on Hot Start Conditions84
Figure 4.51: Influence of Nanoparticles Concentrations on Exhaust Temperature at
Maximum Load on Cold Start Conditions. Figure 4.52: Influence of nanoparticles
concentrations on exhaust temperature at maximum load on hot start conditions85
Figure 4.53: Influence of Nanoparticles Concentrations on BSFC at Maximum Load on
Cold Start Conditions
Figure 4.54: Influence of Nanoparticles Concentrations on BSFC at Maximum Load on
Hot Start Conditions.
Figure 4.55: Influence of Nanoparticles Concentrations on Brake Power Produced at
Maximum Load on Cold Start Conditions
Figure 4.56: Influence of Nanoparticles Concentrations on Brake Power Produced at
Maximum Load on Hot Start Conditions88
Figure 4.57: Influence of Nanoparticles Concentrations on RPM at Maximum Load on
Cold Start Conditions89
Figure 4.58: Influence of Nanoparticles Concentrations on RPM at Maximum Load on
Hot Start Conditions90
Figure 4.59: Influence of Nanoparticles Concentrations on Efficiency of Diesel Engine
at Maximum Load on Cold Start Conditions
Figure 4.60: Influence of Nanoparticles Concentrations on Efficiency of Diesel Engine
at Maximum Load on Hot Start Conditions91
Figure A.1: CO Values for Selected Nanodiesel Fuels at 0% and 100% load on Hot
Start Conditions
Figure A.2: CO ₂ Values for Selected Nanodiesel Fuels at 0% and 100% Load on Hot
Start Conditions
Figure A.3: Unburned HC Values for Selected Nanodiesel Fuels at 0% and 100%
Loads on Hot Start Conditions
Figure A.4: NO Values for Selected Nanodiesel Fuels at 0% and 100% load on Hot
Start Conditions
Figure A.5: Excess O ₂ values for selected nanodiesel fuels at 0% and 100% load on hot
start conditions104
Figure A.6: BSFC values for Selected Nanodiesel Fuels at Maximum Load on Hot Start
Conditions104
Figure A.7: Brake Power Values for Selected Nanodiesel Fuels at Maximum Load on
Hot Start Conditions
Figure A.8: Exhaust Temperature Values for Selected Nanodiesel Fuels at 0% and
100% Load on Hot Start Conditions
Figure A.9: RPM Values for Selected Nanodiesel Fuels at 0% and 100% Load on Hot
Start Conditions
Figure A.10: Efficiency of Diesel Engine for Selected Nanodiesel Fuels at Maximum
Load on Hot Start Conditions

Nomenclature

API: American Petroleum Institute

BSFC: Brake Specific Fuel Consumption

BP: Brake Power

CFR: Cooperative Research Committee

CI: Cetane Index

CN: Cetane Number

CIE: Compression Ignition Engine

DFPs: Direct Fuel Particulate Filters

EPA: Environmental Protection Agency

FBP: Final Boiling Point

IBP: Initial Boiling Point

NEDC: New European Driving Cycle

PM: Particulate Matters

RPM: Revolution per Minute

SCR: Selective Catalytic Reduction

TEM: Transmission Electron Microscope

THC: Total Hydrocarbon