

Comparison between Single Fraction versus Multiple Fraction Radiotherapy in Terms of Pain Control and Prevention of Skeletal related Events in Patients with Bone Metastasis Candidates for Radiotherapy

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Oncology & Nuclear Medicine

By

Sara Abd El Mohdy Ibrahim M.B.B.Ch

Under Supervision of

Prof. Dr. Ali Mohamed Azmy

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr. Azza Mohamed Adel

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr. Ahmed Aly Nagy

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Ali Mohamed Azmy**, professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Azza**Mohamed, Assistant Professor of Clinical Oncology and

Nuclear Medicine, Faculty of Medicine, Ain Shams

University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Prof. Dr. Ahmed Aly** Magy, Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

Sara Abd El Mohdy Ibrahim

To:

My parents

for their endless love, support, and continuous care

> My Husband & My Family

Tist of Contents

Title	Page No.
List of Tables	6
List of Figures	7
List of Abbreviations	8
Introduction	1 -
Aim of the Work	3
Review of Literature	
■ Pathogenesis of Bone Metastasis	4
Skeletal related Events	28
Radiotherapy	28
Patients and Methods	52
Results	55
Discussion	68
Limitations	75
Summary and Conclusion	76
References	78
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Adjunct analgesic	38
Table (2):	Analgesic for neuropathic pain	39
Table (3):	American College of Ra Appropriateness Criteria Non-Spin Metastases	e Bone
Table (4):	Patients age in two groups	56
Table (5):	Patient's gender in two groups	56
Table (6):	Diabetic patients in two groups	57
Table (7):	Hypertensive patients in two groups	58
Table (8):	Primary diagnosis, site of metasta percentage of SRE in both arms	
Table (9):	Analgesics used in both groups	62
Table (10):	Pain response in single fraction group through 4 follow up	months
Table (11):	Response rate in both arm accornumerical analogue scale	
Table (12):	Table showing percentage of res and non responders in both arms	_
Table (13):	Different trials comparing single and multiple fraction radiotherapy	

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Incidence of bone metastasis	
Fig. (2):	Anatomy of the hip	
Fig. (2):	ESCC grading scale	
_	•	
Fig. (4):	Viscous circle of osteolytic bone metasta	
Fig. (5):	Multiple stromal cell types converge support a tumorigenic primary niche	•
Fig. (6):	Osteolytic lesion in skull	
Fig. (7):	CT scan showing osteolytic lesion in ribs	s22
Fig. (8):	MRI showing vertebral metastasis	s in
(-)	prostate cancer patient	
Fig. (9):	Skeletal scintigraphy	
Fig. (10):	PET-CT	27
Fig. (11):	Tools for assessing pain	29
Fig. (12):	Gender distribution in Arm I and Arm I	I56
Fig. (13):	Diabetic patients in two arms	57
Fig. (14):	Hypertensive patients in the two arms.	58
Fig. (15):	Skeletal related Events (SRE) in both a	rms61
Fig. (16):	Figure demonstrating analgesics used in	
T! (4.5)	groups.	
Fig. (17):	Figure showing pain response in s fraction arm through 4 months follow up	•
Fig. (18):	Figure showing pain arm through 4 meresponse in multiple fraction	onths
Fig. (19):	Pain response in the two arms	66
Fig. (20):	Figure showing percentage of respondent and non-responders in both arms	

Tist of Abbreviations

Abb.	Full term
AIDs	. Aquired immunodeficiency syndrome
BM	
	. Bone marphogenic proteins
	. Brief pain inventory
	. Cancer associated fibroblasts
CNS	. Central nervous system
CSF	. Colony stimulating factor
CT	. Computer tomography
DCS	. Dendirtic cells
EBRT	. External beam radiotherapy
ECM	. Extracelluar matrix
EFG	. Epidermal growth factor
EPC	. Endothelial progenitor cells
HBI	. Hemibody irradiation
HCC	. Hepatocellular carcinoma
HIFU	. High intensity focused
HT	. Helical tomotherapy
IGF1	. Insulin like growth factor
IL6	. Interleukin 6
IMRT	. Intensity modulated radiotherapy
LECS	. Lymphatics endothelial cells
MDSCS	. Myeloid derived supprossor cells
MESCC	. metastatic epidural spinal cord compression
MF	. Multiple fraction
MIPI	. Macrophage inflammatory protein 1
MRI	. Magnetic resonance imaging
MUO	. Metastatic of unknown origin

Tist of Abbreviations cont...

Abb.	Full term
NK	Natural killer
	Non steroidal antiinflammatory drugs
	Oncology services comprehensive electronic records
PET	Poitron emission tomography
PTH	Parathyroid hormone
PTHR1	Parathyroid hormone related peptide receptor
QOL	Quality of life
RFA	Radiofrequency ablation
RTOG	Radiation therapy oncology group
SABR	Sterostatic ablative body radiotherapy
SBRT	Sterostatic body radiotherapy
SF	Single fraction
SKE	Skeletal related events
SNRIs	Selective seritonine norepinephrine reuptake inhibitors
SPSS	Statistical package for social science
SSRIs	Selective seritonine reuptake inhibitors
TAMs	Tumor associated macrophage
TGF	tumor growth factor
TME	Tumor microenvironment
TREG	Regulatory t cells
U.B	Urinary bladder
VEGF	Vascular endothelial growth factor

Introduction

Done metastases occur in up to 70% of prostate cancer patients and breast cancer patients during the course of their disease. Up to 40% of patients with lung cancer, renal-cell carcinoma and thyroid cancer develop bone metastases (Cecchini et al., 2014).

Bone metastases may be osteoblastic, osteolytic, or mixed. Quality of life may be significantly impaired as a consequence of painful bone metastases. If pathological fractures or spinal-cord compression occur typically referred to as skeletal-related events (SREs), the metastases are defined as 'complicated'. Without such complications, the metastases are defined as 'uncomplicated' (*Hartsell et al.*, 2013).

Treatments vary depending on the underlying disease. External beam radiotherapy, endocrine treatments, chemotherapy, targeted therapies and radioisotopes are all important. In addition, orthopaedic intervention may be necessary for the structural complications of bone destruction or nerve compression (*Salvo et al.*, 2012).

Complementing these treatments is the role of bonetargeted agents. Treatment decisions depend on whether the bone disease is localized or widespread, the presence or absence of extraskeletal metastases and the nature of the

underlying malignancy. Radiotherapy is relevant throughout the clinical course of the disease (Somerfield et al., 2013).

Radiotherapy is a safe and effective therapy and is well established for such a situation. A fractionation regimen with a short overall treatment time (≤ 1 week) would be preferred if it was as effective as longer courses (2-4 weeks) (Chow et al., *2014*).

Randomized clinical trials and meta-analyses have demonstrated that single-fraction radiotherapy with 1×8 Gy is as effective for pain relief as multi-fraction regimens such as 5 \times 4 Gy in 1 week or 10×3 Gy in 2 weeks (*Gomez-Iturriagaet* al., 2015).

Re-irradiation for recurrent pain in the irradiated region is required more often after single-fraction radiotherapy than multi-fraction radiotherapy; however, re-irradiation following single-fraction radiotherapy is safe and effective. Thus, 1×8 Gy is considered the standard regimen for uncomplicated painful bone metastases without pathological fractures or spinal cord compression (Buergy et al., 2016).

Pain assessment in bony metastasis by different tools such as The Numeric Pain Rating Scale, Visual Analog Scale, brief pain inventory, Adult Non-Verbal Pain Scale (Hicks et al., 2001).

AIM OF THE WORK

o prove efficacy and equivalency of single fraction radiotherapy (800 cGy) and multiple fraction radiotherapy (10 fractions, 300 cGy/ fraction, 1 fraction/day, 5days per week over 2 weeks to a total of 3000 cGy) in terms of pain relief and prevention of skeletal related events.

PATHOGENESIS OF BONE METASTASIS

etastases are the most common type of malignant tumors which involve bone; the skeleton is the third common site for metastasis after the lung and liver. Any malignant tumor may metastasize to bone: the most common malignancies are breast, prostate and secondary lesions from lung cancer have risen in both sexes in the last two decades (*Piccioli et al.*, 2014).

Incidence:

According to OSCER, (Oncology Services Comprehensive Electronic Records) Among 382,733 study patients, breast cancer (36%), lung cancer (16%), and colorectal cancer (12%) were the most common. Mean time to bone metastasis was (1.1 years), incidence of bone metastasis was 2.9% (2.9–3.0) at 30 days, 4.8% (4.7–4.8) at one year, 5.6% (5.5–5.6) at two years, 6.9% (6.8–7.0) at five years, and 8.4% (8.3–8.5) at ten years. Incidences varied by tumor type with prostate cancer patients were at highest risk (18% – 29%) followed by lung, renal and breast cancer (*Hernandez et al.*, 2018).

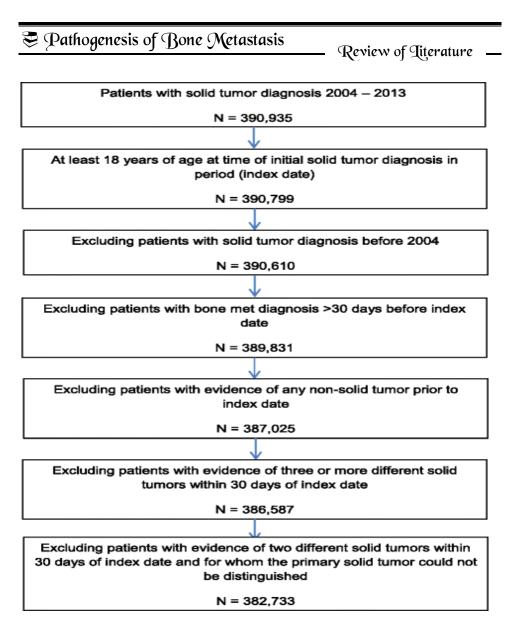


Fig. (1): Incidence of bone metastasis (Hernandez et al., 2018).

Incidence of bone metastases in breast cancer:

Incidence of bone metastases and skeletal related events in breast cancer patients: Of the 35,912 Breast Cancer patients, (0.5%) were with bone metastases at the time of primary breast cancer diagnosis, and of these, (43.2%) developed a SRE on follow up. A (3.6%) Breast Cancer patients without bone

metastases developed bone metastases during a median followup time of 3.4 years. Among these patients, (46.4%) developed a SRE during a median follow-up time of 0.7 years (*Jensen et al.*, 2011).

Incidence of bone metastasis in prostatic cancer patients:

Incidence of secondary bone lesions from prostatic cancer patients is 65%-75%, These bone metastases are mainly osteosclerotic, which produce a significant impact on patients 'functional status and quality of life (QOL), not only related to pain, but also to the relevant risk of skeletal-related events (SREs) that can impact physical well-being and daily living activities (*Broder et al., 2015*).

According to Food and Drug Administration, incidence of skeletal related events (SREs) include pathologic bone fractures, spinal cord compression, surgery to bone, radiotherapy to bone incidence of SREs in patients with prostate cancer and bone metastases in a 15-month observation period, nearly half (44.2%) of those patients experienced at least one SRE (*Saad et al.*, *2007*).

Incidence of bone metastasis in lung cancer:

In patients with metastatic lung cancer, the median survival time is about 6–12 months. However, bone metastases present with a SRE in 25% of patients, while 40% will have a SRE during follow-up (*Decroisette et al.*, 2011).