

EFFECT OF SOIL IN REDISTRIBUTION OF LOADS DUE TO COLLAPSE OF A COLUMN

By

Ahmed Hassan Mohamed Ibrahim Nada

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

EFFECT OF SOIL IN REDISTRIBUTION OF LOADS DUE TO COLLAPSE OF A COLUMN

By Ahmed Hassan Mohamed Ibrahim Nada

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Under the Supervision of

Prof. Dr Sherif Ahmed Mourad	Dr Sherif Adel Akl	
Professor of steel structure	Associate Professor	
Structural engineering department	Public works department	
Faculty of Engineering, Cairo University	Faculty of Engineering Cairo University	

EFFECT OF SOIL IN REDISTRIBUTION OF LOADS DUE TO COLLAPSE OF A COLUMN

By Ahmed Hassan Mohamed Ibrahim Nada

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the

Prof. Dr. Sherif Ahmed Mourad,

Thesis Main Advisor

Dr. Sherif Adel Akl,

Advisor

Prof. Dr. Mohamed Ibrahim Amer,

Internal Examiner

Prof. Dr. Mostafa Zaki Mostafa,

External Examiner (Minia University)

Ahmed Hassan Mohamed Ibrahim nada **Engineer's Name:**

Date of Birth: 6./10/1982 **Nationality:** Egyptian

E-mail: Nadawey_82@yahoo.com

01223257343 **Phone:**

96 ard elmokhabaart – 6 of October city Address:

1/10/2012 **Registration Date: Awarding Date:**/2018 Degree: Master of Science

Department: Structural Engineering

Supervisors:

Prof. Dr. Sherif Ahmed Mourad

Dr. Sherif Adel Akl.

Examiners:

Prof. Dr. Sherif A. Mourad (Thesis Main Advisor)

Dr. Sherif Adel Akl. (Advisor)

Prof. Dr. Mohamed I. Amer (Internal Examiner) Prof. Dr. Mostafa Zaki Mostafa (External Examiner)

Minia University

The Title of Thesis:

Effect of soil in redistribution of loads due to collapse of a column

Key Words:

Progressive collapse; ABAQUS; Reinforced Concrete; Soil; Plasticity.

Summary:

The thesis discussed the effect of soil on the structure during the progressive collapse. ABAQUS is used to simulate the soil as 3D model rested on it the structure, the study compared the results from a structure designed due to the case of loading of DoD to the results get out from the ABAQUS taking into consideration the additional strainning actions results from the differential settlement and the plasticity of soil. The results show that the outer columns subjected to additional strainning actions cause the failure of the design of some outer column.

The study has been made on two types of constitutive methods, MC and MCC, the MC study the dry clay and the MCC for not fully saturated clay. Finally, A new case of loading was made one for the edge column and another for the corner column.

Acknowledgments

Great thanks to ALLAH who helped the author to finish his thesis. Moreover, special thanks to Prof. Dr Sherif A. Mourad for his guidance, support, encouragement, and valuable discussions. The author is also grateful to Dr Sherif A. Akl, for his advice, discussion, and review during the course of this work, and significant efforts to accomplish the thesis objectives.

Table of Contents

Ackno	wledgments	Page
	of Contents	
	Tables	
	Figures	
	Symbols and Abbreviations	
	ct	
-	er 1 Introduction	
1.1	General	
1.2	Problem Statement	
1.3 Chapte	Organiza tion of The Thesiser 2 Literature Review	
2.1	Introduction.	
2.2	Progressive Collapses	
2.2.1	Direct Design Approaches.	
2.2.2	Indirect Design Approaches	3
2.2.3	The Differences Between the Codes and Researches	4
2.3	Soil Structure Interaction (SSI)	
2.3.1	Methods of Analysis of SSI	6
2.3.2	The Best Method That Can Be Used	7
2.4	Soil Description and Parameterization	
2.4.1	Artificial Boundaries.	
2.4.2	Impedance Parameters for Shallow Foundations	
2.4.3	Methods of Evaluation of Shallow Foundation Impedance Parameters.	
2.4.4	Stiffness and Damping Constant of Rigid Shallow Foundation	
2.4.5	Dynamic Soil Properties and its Evaluation	
2.4.6	Special Cases in Foundation Modeling	10
2.4.7	Benefits from Soil-Structure Interaction.	11
2.5 2.5.1	Settlements Immediate Settlement	
2.5.2	Consolidation Settlement	13
2.5.3	Secondary Compression Consolidation	15
Chapt	er 3 Methodology	17
3.1 3.1.1	Types of Elements	
3.1.2	Plate Elements	18

3.1.3	Shell Elements	18
3.2	Difference between Shell and Plate Elements	19
3.3 3.3.1	Constitutive Models of Soil	
3.3.2	Modified Cam-Clay	20
3.4 3.4.1	Benchmark ProblemsBeam on Elastic Foundation with Finite Length	
3.4.2	Circular Footing on Elastic Foundation	23
3.5 3.5.1	The Effect of Soil in The Structure Description of the Super Structure	
3.5.2	Soil Modelled as Springs Elements (ETABS)	25
3.5.3	Soil Modelled as Solid Elements (Mohr-coulomb)	26
3.6 3.6.1	Description of Model	
3.7 3.7.1	Effect of Collapse of One Column on the Structure Corner Column Case	
3.7.2	Edge Column Case	28
3.7.3	Center Column Case	29
3.8 3.8.1	Effect of Soil After Column Collapse	
3.8.2	Edge Column Case	31
3.8.3	Center Column Case	32
Chapte	er 4 Effect of Soil Plasticity	35
4.1	Scenarios of Analyses	35
4.2	Initial Comparisons	35
4.3	Effect of Mesh Finess	35
4.4 4.4.1	Mohr-Coulomb Method	
4.4.2	Edge Column Case	40
4.4.3	Center Column Case	43
Chapte	er 5 Effect of Time on Load Redistribution	47
5.1	Corner Column Case	47
5.2 5.2.1	Edge Column Case	
5.3	Discussion	
5.3.1	The Corner Column Removal	
5.3.2	The Edge Column Removal	
5.3.3	The Middle Column Removal	61

5.4	The Beams	62
5.5 5.5.1	Verify the New Case of Loading Structure Dimensions	
5.5.2	corner column Case	63
5.6 Chapte	Edge Column Caseer 6 Summary and Conclusion	
6.1	General	67
6.2	Summary	67
6.3	Conclusions	67
6.4 Referen	Recommendations	
Append	lix A	72
Append	dix B	73
Append	dix C	76
Append	dix D	81
Append	dix E	84

List of Tables

	Page
Table 2.1 Accidental loads load combinations	4
Table 2.2 Load combinations	4
Table 2.3 Allowable local collapse area	5
Table 3.1 Differences between shell and plate	19
Table 3.2 Soil properties	26
Table 5.1 The deflection and moment subjected to the critical beams	62

List of Figures

	Page
Fig. (3.1) the degrees of freedom of the beam	
Fig. (3.2) the degrees of plate element	
Fig. (3.3) the degrees of shell element	
Fig. (3.4) show the beam on elastic foundation straining actions	
Fig (3.5) Straining actions on the beam	
Fig (3.6) the model in ABAQUS	
Fig (3.7) Comparison between settlements in the two methods	
Fig (3.8) Comparison between vertical stresses in the two methods	
Fig (3.9) 3D model of the structure	24
Fig (3.10) Percentage of redistribution of axial forces	25
Fig (3.11) Comparison between axial forces with and without SSI effect	26
Fig (3.12) shows a plan for the column and footing	27
Fig (3.13) Show the comparison between the axial forces working	27
Fig (3.14) Percentage of redistribution of axial forces	27
Fig (3.15) Percentage of redistribution of axial forces	28
Fig (3.16) Percentage of redistribution of axial forces	29
Fig (3.17) Percentage of redistribution of axial forces	29
Fig (3.18) Comparison between axial forces with and without SSI effect	30
Fig (3.19) Percentage of redistribution of axial forces after & before removal	31
Fig (3.20) Comparison between axial forces with and without SSI effect	31
Fig (3.21) Percentage of redistribution of axial forces after & before removal	32
Fig (3.22) Comparison between axial forces with and without SSI effect	32
Fig (3.23) Percentage of redistribution of axial forces after & before removal	33
Fig (4.1) Differences between axial forces in ABAQUS and ETABS	36
Fig (4.2) Differences between axial forces in ABAQUS and ETABS with SSI	36
Fig (4.3) shows the differences between the settlements	37
Fig (4.4) Show the comparison between the axial forces working	37
Fig (4.5) Percentage of redistribution of axial forces after & before removal	38
Fig (4.6) Show the interaction diagram for C2	39
Fig (4.7) Comparison between settlement on soil before and after removal	
Fig (4.8) Differences between the reactions for the outer columns	
Fig (4.9) Percentage of redistribution of axial forces after & before removal	
Fig (4.10) New straining action inside the interaction diagram for corner column.	
Fig (4.11) New straining action inside the interaction diagram for column (1-C)	
Fig (4.12) Settlement under footing at axes one before and after removal	
Fig (4.13) Settlement under footing at axes two before and after removal	
Fig (4.14) Differences between the reactions for the columns	
Fig (4.15) Percentage of redistribution of axial forces after & before removal	
Fig (4.16) New straining action inside the safe area, for corner column	
Fig (4.17) New straining action inside the secure zone, for edge column	
Fig (4.18) The new straining action inside the safe area, for middle column	
Fig (4.19) Settlement on soil before and after removal of the middle column at ax	

Fig (5.1) Differences between the reactions for the outer columns	47
Fig (5.2) Shows the interaction diagram for the corner column after one second	48
Fig (5.3) Percentage of change of axial forces after & before removal after one day	y48
Fig (5.4) Percentage of variation of axial forces after & before removal after one d	lay 49
Fig (5.5) Shows the interaction diagram for the edge column	49
Fig (5.6) Shows the interaction diagram for the inner column	50
Fig (5.7) Difference in settlement before and after removal under axes 1	51
Fig (5.8) Differences between the reactions for the outer columns	51
Fig (5.9) Percentage of change of axial forces after & before removal after one day	y52
Fig (5.10) Percentage of change of axial forces after & before removal after 1 sec.	52
Fig (5.11) The interaction diagram for the corner column (1-A)	53
Fig (5.12) The interaction diagram for the middle column (2-B)	54
Fig (5.13) The interaction diagram for the edge column (1-c)	54
Fig (5.14) Difference in settlement before and after removal under axes 1	54
Fig (5.15) Differences between the reactions for the columns	55
Fig (5.16) Percentage of change of	56
Fig (5.17) Percentage of change of axial forces after & before removal after one se	ec56
Fig (5.18) The interaction diagram for the corner column	57
Fig (5.19) The interaction diagram for the edge column	57
Fig (5.20) The interaction diagram for the inner column	58
Fig (5.21) Settlement before and after removal of the middle column at axes 3	58
Fig (5.22) differences between the reactions for the columns	59
Fig (5.23) Settlement using MC and MCC under axes 1	59
Fig (5.24) Differences between the reactions for the columns	60
Fig (5.25) Settlement using MC and MCC under axes 1	61
Fig (5.26) Differences between the reactions for the columns	61
Fig (5.27) Settlement using MC and MCC under axes 1	62
Fig (5.28) Settlement between the new case and old one	64
Fig (5.29) Difference between axial loads in old and new one	64
Fig (5.30) Difference between axial inner loads in old and new one	64
Fig (5.31) Strainning action on the new section of c2	65
Fig (5.32) shows the straining action on the new section of c1	65

List of Symbols and Abbreviations

	List of Syllibois and Tibble viations
symbol	description
GSA	general service administration
DoD	department of defense
MC	Mohr-coulomb
MCC	Modified Cam Clay
AP	The Alternate Path
SLR	The Specific Local Resistance
D or G	dead load
S	snow load
W	wind load
L	live load
P	relevant representative value of a pre-stressing action
A_d	design accidental action
Q	variable load (live load, snow load, wind load),
ф 1	factor for frequent value of a variable action
ф2	Factor for quasi-permanent value of a variable action.
A_k	defined load
SSI	Soil structure interaction
E	Young's modulus
υ	Poisson's ratio
ф	the friction angle
C	cohesion
Ψ	dilatancy angle
λ	the swelling index
M	friction constant
S_{i}	immediate settlement of a point on the surface
C_s	shape and rigidity factor
Q	equivalent uniform stress on the footing
В	characteristic dimension of the footing
v^2	Poisson's ratio
Eu	Un-drained elastic modulus (Young's modulus)
E	initial void ratio

Abstract

This thesis focuses on examining the representation of soil as a continuum element rather than a spring element. The analyses show how the approximation of soil behavior into a linear spring is different from a more realistic continuum representation. In addition, the thesis discusses the effects of two behaviours on the structure under standard and unusual conditions. Furthermore, the thesis illustrates the impact of 3D modelling for both structure and soil .

First, the thesis investigates the influence of soil on the structure within usual conditions using two case studies. The first case considers the impact of the elastic behaviour of soil by means of a spring element, using a Finite Element Software (FES) called ETABS, while the second case inspects soil as a continuum element, while taking into account the effect of the plasticity of the soil. In addition, Mohr-Coulomb, a constitutive method, is utilized for the sake of representing the plastic behaviour of soil, using another sophisticated FES called ABAQUS. This study reveals the redistribution of the axial force on columns, with special reference to the plastic behaviour .

Second, the thesis investigates soil's influence on the structure under unusual conditions. For example, the structure has been subjected to a destructive action which leads to a collapse of one of its columns. This destruction, in turn, sets the foundation of axial force redistribution on all columns, which may lead to progressive collapse. Many codes have been generated, in some cases of loading, in order to overcome such a problem. This has been applied to the department of defense (DOD). Therefore, to avoid this progressive collapse, the structure must be designed in accordance with one of these codes. In the situation of the loss of one column, there would appear two cases of redistribution of the axial force: one takes place owing to the influence of soil structure interaction, while the other takes place attributed to the redistribution of the axial force of the collapsed column.

The thesis explores the previously mentioned two cases of redistribution using three examples of column removal: corner, edge and middle. Furthermore, the thesis examines these three examples attributed to two soil behaviours. The argument has been contrasted about the plastic behavior of the soil using two constitutive methods, Mohr-Coulomb and Modified Cam Clay. Results show that the redistribution of axial force in the elastic response differs completely from the plastic behaviour. Also, it is noted that the axial force redistribution, taking into consideration the time effect, is different when it happens immediately from when it happens afterwards.

All the aforementioned results have been compared to a structure that has been designed in accordance with the DOD case of loading. This comparison has resulted in the following two cases. The first case denotes significant effects in the DOD case of loading only with the example of the middle column failure. In contrast, the second case is situated with regards to the corner and edge column removal, where the DOD case becomes unsafe. The results demonstrate the appearance of a progressive collapse in case of the edge column removal. Thus, the thesis has contributed to discovering two new cases of loading, one is concerned with the edge column, while the other focuses on the corner columns. Finally, the thesis has come up with a case of the beams loading that helps avoid any problems due to beam failure.

Chapter 1 Introduction

1.1 General

The progressive collapse occurs as a result of a local failure in one structure element or more, which results in a successive failure of the whole structure. There appears to be multiple examples for progressive collapse. The first example has taken place with the Ronan point of a residential building. The collapse represents the cause for the first progressive collapse document in the British Standard. Nevertheless, following the collapse of the World Trade Center Towers, numerous activities have been undertaken for the serious consideration of more detailed guidelines in order to avoid such a collapse. The most important guidelines include that of the General Service Administration (GSA) and that of the Department of Defense (DOD)

1.2 Problem Statement

Two approaches have been considered to avert progressive collapse. The first approach adopts an indirect method which ensures that the structure commits to prescriptive design rules. Nevertheless, the second approach adopts a direct scheme by means of two possibilities, depending on the allowance of local failure. These two approaches exclude the influence of soil structure interaction in comparison to the present structure, in the time of the progressive collapse. The loss of one column in the structure causes a redistribution of the axial force on columns. In this case, if the columns were not able to carry the additional axial loads, the progressive collapse would take place as a result of such a thing. In this light, codes have been set with guidelines that constitute regulations in order to allow the columns to carry over additional loads.

Therefore, a double effect on the structure has been investigated in this study. The soil structure interaction is also taken into consideration, where the SSI results in a redistribution of the axial force. The two cases of the axial forces redistribution are as follows: one happens due to the loss of one column; nevertheless, the other happens due to the effect of the SSI.

1.3 Organization of The Thesis

The second chapter is the literature review, which studies the history of the progressive collapse, and how to overcome it, using two approaches. The thesis adopts the direct approach, leading to the prevention of any failure. The third chapter is concerned with the effect of soil on the structural element. This has been done using different constitutive methods like Mohr-Coulomb (MC) and Modified Cam Clay (MCC). Furthermore, this chapter includes a benchmark problem authentication, through the implementation of the new software program to figure out results. The thesis makes use of a DOD structure design, as a case study by employing different cases of removal and soil behaviours. The first case examines the effect of soil behaviour on the structure, with no cases of removal. The second case studies the effect of elastic behaviour, once by regarding the soil as springs and another by regarding the soil as a continuum element. The study has revealed significant differences in results. The same chapter considers the effect of the elastic behaviour on the progressive collapse. This study scrutinizes three cases of column removals, represented in the corner, the edge and the middle.

Chapter four explores the effect of the plastic behaviour of the soil, being a continuum element, at the time of the progressive collapse, and by using the constitutive method

Mohr-coulomb. This has led to significantly different results in comparison to the elastic behaviour.

Chapter five continues to examine the plastic behaviour of the soil. What differentiates chapter five from chapter four is that chapter five investigates the effect of time and pore pressure. This is done for two time intervals, one is a short run and the other is a long one. To inspect the short run, the Modified Cam Clay constitutive method is used. When comparing both the Modified Cam Clay and the Mohr-Coulomb on the short run time interval, results show a slight difference between both of them, while the long run time interval reveals a new redistribution for the axial columns.

Finally, results demonstrate the most affected columns being the outer columns, while there appears to be a decrease in the axial forces of the inner columns. Results also show that it's not safe to load the DOD for the outer columns. Therefore, the case of loading in the DOD needs to be modified accordingly. After several attempts, two new cases of loading have been discovered, one that deals with the corner columns and the other with the edge columns, respectively. In addition to that, a new case of loading that involves beams was designed, since the beams needed design adjustment.

This thesis centers only on the static effect. Therefore, future studies should focus on the dynamic effect, with the use of a different type of foundation, such as the deep foundation.