



## EXPERIMENTAL INVESTIGATION OF STRENGTHENING SLAB-COLUMN CONNECTIONS WITH CFRP FAN

By

### Eman Abd Al Ghaffar Ahmed Essa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

## EXPERIMENTAL INVESTIGATION OF STRENGTHENING SLAB-COLUMN CONNECTIONS WITH CFRP FAN

By

### Eman Abd Al Ghaffar Ahmed Essa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

Under the Supervision of

#### Prof. Dr. Hamed Mohamed Mahmoud Hadhoud

Dr. Khaled Farouk Omar El- Kashif

Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University Assistant Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

## EXPERIMENTAL INVESTIGATION OF STRENGTHENING SLAB-COLUMN CONNECTIONS WITH CFRP FAN

By

### **Eman Abd Al Ghaffar Ahmed Essa**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

| Approved by the Examining Committee           |                     |
|-----------------------------------------------|---------------------|
| Prof. Dr. Hamed Mohamed Mahmoud Salem Hadhoud | Thesis Main Advisor |
| Prof. Dr. Wael Mohamed Al Degwy               | Internal Examiner   |
| Prof. Dr. Hatem Hamdy Ghaith                  | External Examiner   |

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer's Name: Eman Abdalghaffar Ahmed Essa

**Date of Birth:** 1/8/1990 **Nationality:** Egyptian

**E-mail:** eng\_eman\_abdalghaffar@hotmail.com

**Phone:** (+20) 01117442007

Address: 541-saudi building – hadayek al koba

Registration Date: 01/10/2013
Awarding Date: ..../2018
Degree: Master of Science
Department: Structural Engineering



#### **Supervisors:**

Prof. Dr. Hamed Mohamed Mahmoud Hadhoud

Dr. Khaled Farouk Omar El-Kashif

#### **Examiners:**

Prof. Dr. Hamed Mohamed Mahmoud Salem Hadhoud (Thesis Main Advisor)
Prof. Dr. Wael Mohamed Al Degwy (Internal Examiner)
Prof. Dr. Hatem Hamdy Ghaith (External Examiner)

-Professor of Concrete Structures Housing and Building Research Center

#### Title of Thesis:

"Experimental Investigation of Strengthening Slab-Column Connections With CFRP Fan ".

#### **Key Words:**

Punching Shear Strengthening, Flat slabs, RC, CFRP string.

#### **Summary**:

The current thesis presents an experimental investigation of strengthening flat slab column connections in punching shear using CFRP string. Two types of strengthening were used; strengthening with CFRP string (fan shape) and strengthening with steel bolts. Parameters which were studied were the number of CFRP fan strengthener, arrangement or configuration of CFRP fan strengthener, and the type of strengthener (CFRP string or steel bolts). All the specimens were strengthened before starting loading, the results of the tested specimens showed that CFRP fan strengthening technique is able to enhance both the punching shear capacity and the ductility of tested flat slab specimens.

### **ACKNOWLEDGMENT**

I would like to express my gratitude to my parents, my brothers, my friends, especially my mother, my brother Salah Abdalghaffar who always support me and stand beside me in every steps in my life.

I would like to gratefully acknowledge the significant assistance and guidance of my advisors during my work on this thesis. I would also like to thank all the people who have helped me to accomplish my thesis.

I wish to express my sincere appreciation to my major advisor, Prof. Dr. Hamed Mohamed Hadhoud for his academic support through the entire study period and his advices to finish this work as it should be.

Special thanks to Dr. Khaled Farouk Omar El-Kashif for his technical support, providing valuable material and providing the required needs to finish this work as it should be.

# **DEDICATION**

Dedicated to my parents, my brothers with love

# TABLE OF CONTENTS

| ACKNOWLEDGMENT                                               | I     |
|--------------------------------------------------------------|-------|
| DEDICATION                                                   | II    |
| TABLE OF CONTENTS                                            | III   |
| LIST OF TABELS                                               | VII   |
| LIST OF FIGURES                                              | IX    |
| NOMENCLATURE                                                 |       |
| ABSTRACT                                                     |       |
| ADSTRACT                                                     | III V |
| CHAPTER ONE: INTRODUCTION                                    |       |
| 1-1 General                                                  |       |
| 1-2 Objective and Scope of Work                              |       |
| 1-3 Thesis Outline                                           | 2     |
| CHAPTER TWO: LITERATURE REVIEW2-1 General                    |       |
| 2-2 Punching Shear Strength of Flat Slabs                    | 5     |
| 2-2-1 Critical Sections [1]                                  | 5     |
| 2-2-2 Design Codes.                                          | 7     |
| 2-2-2-1 The Egyptian Code of Practice [2]                    |       |
| 2-2-2-2 JSCE Guideline for Concrete No.15[3]                 |       |
| 2-2-2-3 American Concrete Institute (ACI) [4]                |       |
| 2-3 Previous Research Works                                  |       |
| 2-3-1 Strengthening with Steel Bolts and Steel Plates        |       |
| 2-3-2 Strengthening with Fiber Reinforced Polymer Composites |       |
| 2-4 Fiber Reinforced Polymer [18]                            |       |
| 2-4-1 Historical Background                                  |       |
| 2-5 Fiber Reinforced Polymer Composition                     |       |
| 2-5-1 Resins                                                 |       |
| 2-5-1-1 Primer                                               |       |
| 2-5-1-2 Putty Fillers                                        |       |
| 2-5-1-3 Saturating Resin.                                    |       |
| 2-5-1-4 Adhesive                                             |       |
| 2-5-2 Fibers                                                 | 25    |

| 2-5-2-1 Filament                                    | 25  |
|-----------------------------------------------------|-----|
| 2-5-2-2 Yarn                                        | 26  |
| 2-5-2-3 Tow                                         | 26  |
| 2-5-2-4 Roving                                      | 26  |
| 2-5-2-5 Chopped Strands                             | 27  |
| 2-5-2-6 Fiber Mats                                  | 28  |
| 2-5-2-7 Fabrics                                     | 28  |
| 2-5-2-8 Unidirectional Fabrics                      | 29  |
| 2-5-3 Protective Coating                            | 30  |
| 2-6 Physical Properties                             | 30  |
| 2-6-1 Density                                       | 30  |
| 2-6-2 Coefficient of Thermal Expansion.             | 30  |
| 2-6-2-1 Effect of High Temperature Beyond the Tg    | 31  |
| 2-7 Mechanical Properties                           |     |
| 2-7-1 Tensile Strength                              | 32  |
| 2-7-2 Compressive Behavior of Externally Bonded FRP | 32  |
| 2-7-3 Creep Rupture                                 | 32  |
| 2-7-4 Fatigue                                       | 33  |
|                                                     |     |
| CHAPTER THREE: EXPERIMENTAL WORK                    | 34  |
|                                                     | 2.4 |
| 3-1 Introduction                                    |     |
| 3-2 Material Specifications                         |     |
| 3-2-1 Coarse Aggregate.                             |     |
| 3-2-2 Fine Aggregate                                |     |
| 3-2-3 Cement                                        |     |
| 3-2-4 Steel                                         |     |
| 3-2-5-1 SikaWrap FX-50C                             |     |
| 3-2-5-2 Sikadur-330                                 |     |
| 3-2-5-2 Sikadur-530                                 |     |
| 3-2-5-4 Kemapoxy 165                                |     |
| 3-3 Test Specimens.                                 |     |
| 3-4 Mixing, Placing and Curing Method of Specimens  |     |
| 3-4-1 Concrete Mix Design                           |     |
| 3-4-2 Concrete Mixing, Placing and Curing           |     |
| 3-5 Test Setup                                      |     |
| 3-6 Measuring Instruments                           |     |
| 3-6-1 Concrete Deflection.                          |     |
| 3-6-2 Steel Bars Strain.                            |     |
| 3-6-3 Vertical Loads.                               |     |
| 3-6-4 Cracking.                                     |     |
| 3-7 Strengthening Procedure.                        |     |

| 3-7-1 Using CFRP Fan.                                                             | 47    |
|-----------------------------------------------------------------------------------|-------|
| 3-7-2 Strengthening Using Shear Studs or Steel Bolts                              |       |
| 3-8 Configuration and Number of Shear Connectors                                  |       |
| CHAPTER FOUR: EXPERIMENTAL RESULTS                                                | 55    |
| 4-1 Introduction                                                                  |       |
| 4-2 Test Results of the Specimens.                                                |       |
| 4-2-1 Specimen S1-R-00                                                            |       |
| 4-2-1-1 Cracking Pattern and Mode of Failure                                      |       |
| 4-2-1-2 Load Deflection Curve                                                     |       |
| 4-2-1-3 Strains in Reinforcing Bars                                               |       |
| 4-2-2 Specimen S2-SC-8S                                                           |       |
| 4-2-2-1 Cracking Pattern and Mode of Failure                                      |       |
| 4-2-2-2 Load Deflection Curve                                                     |       |
| 4-2-2-3 Strains in Reinforcing Bars                                               | 59    |
| 4-2-3 Specimen S3-SC-8D                                                           |       |
| 4-2-3-1 Cracking Pattern and Mode of Failure                                      | 59    |
| 4-2-3-2 Load Deflection Curve                                                     | 60    |
| 4-2-3-3 Strains in Reinforcing Bars                                               | 61    |
| 4-2-4 Specimen S4-SS-8S                                                           | 62    |
| 4-2-4-1 Cracking Pattern and Mode of Failure                                      | 62    |
| 4-2-4-2 Load Deflection Curve                                                     |       |
| 4-2-4-3 Strains in Reinforcing Bars                                               |       |
| 4-2-5 Specimen S5-SC-16S                                                          | 64    |
| 4-2-5-1 Cracking Pattern and Mode of Failure.                                     |       |
| 4-2-5-2 Load Deflection Curve.                                                    | 66    |
| 4-2-5-3 Strains in Reinforcing Bars                                               |       |
| 4-2-6 Specimen S6-SC-16D                                                          | 67    |
| 4-2-6-1 Cracking Pattern and Mode of Failure                                      |       |
| 4-2-6-2 Load Deflection Curve.                                                    |       |
| 4-2-6-3 Strains in Reinforcing Bars                                               | 69    |
| CHAPTER FIVE: ANALYSIS OF RESULTS                                                 | 70    |
| 5-1 Introduction                                                                  | 70    |
| 5-2 Group A, Effect of Using Different Number and Arrangement of CFRP string      | 70    |
| 5-2-1 Discussion of Test Results for the Specimens S1-R-00, S2-SC-8S and S5-SC-10 | 6S.71 |
| 5-2-1-1 Cracking Behavior of Tested Specimens                                     | 71    |
| 5-2-1-2 Load- Deflection Behavior                                                 | 73    |
| 5-2-1-3 Ductility of Slabs S1-R-00, S2-SC-8S and S5-SC-16S                        | 75    |
| 5-2-1-4 Stiffness of Slabs S1-R-00, S2-SC-8S and S5-S-8S                          | 76    |
| 5-3 Group B, Effect of Using Double Area of CFRP String                           | 79    |
| 5-3-1 Discussion of Test Results for the Specimens S1-R-00, S3-SC-8D and S6-SC-   |       |
| 16D                                                                               | 79    |

| 5-3-1-1 Cracking Behavior of Tested Specimens                                        | 79             |
|--------------------------------------------------------------------------------------|----------------|
| 5-3-1-2 Load- Deflection Behavior for Specimens                                      | 81             |
| 5-3-1-3 Ductility of Specimens S3-SC-8D and S6-SC-16D                                | 83             |
| 5-3-1-4 Stiffness of Slab S3-SC-8D and S6-SC-16D                                     | 84             |
| 5-4 Group C, Effect of Strengthening Using Steel Bolts                               | 86             |
| 5-4-1 Discussion of Test Results for the Specimen S4-SS-8S                           | 86             |
| 5-4-1-1 Cracking Behavior of Tested Specimens                                        |                |
| 5-4-1-2 Load- Deflection Behavior for Specimen S4-SS-8S                              | 87             |
| 5-4-1-3 Ductility of Slab S4-SS-8S                                                   |                |
| 5-4-1-4 Stiffness of Slab S4-SS-8S                                                   | 89             |
| 5-5 Comparison of Results of the Current Research Tested Specimens' with the Previou | s Experimental |
| Program Specimens'                                                                   | 92             |
| 5-5-1 Comparison of Results of Specimen S4-SS-8S (slab strengthened with 8 steel be  | olts) with     |
| Previous Research Concerned with using Steel Bolts                                   | 92             |
| 5-5-2 Comparison the Results of Specimens Strengthened with Single Area of G         | CFRP fan with  |
| the Previous Experimental Program used the Same Strengthening Technique              | 93             |
| 5-5-2-1 Details of Tested Specimens at Each Experimental Program                     | 93             |
| 5-5-2-2 Punching Shear Failure Load of Each Experimental Program                     | 95             |
| 5-5-2-3 Ductility of Tested Specimens at Each Experimental Program                   | 97             |
| 5-6 Strengthening Materials Cost Influence                                           | 98             |
| 5.6.1 Strengthening with CFRP String                                                 | 98             |
| 5.6.2 Strengthening with Steel Bolts                                                 | 98             |
| 5.6.3 Comparing the Methods of Strengthening                                         | 99             |
| 5-7 The Expected Punching Shear Capacity of Tested Specimens According to D          | ifferent       |
| Codes                                                                                | 102            |
| 5-7-1 Expected Punching Shear Capacity According to ECP[2]                           | 102            |
| 5-7-2 Expected Punching Shear Capacity According to JSCE[3]                          | 103            |
| 5-7-3 Expected Punching Shear Capacity According to ACI [4]                          | 104            |
| 5-7-4 Calculation the Expected Punching Shear Capacity of Specimen (S4-SS-8          | SS) Specimen   |
| Strengthened with 8 Steel Bolts using ACI code (ACI 421.1R-08) [19]                  | 106            |
| CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS                                         | <b>S</b> 107   |
| 6-1 Conclusions                                                                      | 107            |
| 6-2 Recommendations                                                                  | 108            |
| REFERENCES                                                                           | 100            |

# LIST OF TABLES

| Table 2-1: Typical coefficient of thermal expansion for FRP material [18]                                             | 31 |
|-----------------------------------------------------------------------------------------------------------------------|----|
| Table 3-1: Mechanical properties of steel.                                                                            | 35 |
| Table 3-2: Properties of SikaWrap FX-50C                                                                              | 36 |
| Table 3-3: Properties of Sikadur 330                                                                                  | 36 |
| Table 3-4: Properties of Sikadur-52                                                                                   | 37 |
| Table 3-5: Properties of Kemapoxy 165                                                                                 | 37 |
| Table 3-6: The characterises of the tested specimens                                                                  | 38 |
| Table 3-7: Components of specimens mix design (per $m^3$ )                                                            | 39 |
| Table 3-8: Cubes test results show the compressive strength values after 7 days of casting                            | 42 |
| Table 3-9: Cubes test results show the compressive strength values of each specimen that determined at experiment day | 43 |
| Table 4-1: Details of strengthened slabs                                                                              | 55 |
| Table 5-1: Properties of specimens in group (A)                                                                       | 70 |
| Table 5-2: Ductility factor of specimens S1-R-00, S2-SC-8S and S5-SC-16S                                              | 75 |
| Table 5-3: Ductility of slabs S1-R-00, S2-SC-8S and S5-SC-16S using area under curve                                  | 76 |
| Table 5-4: Stiffness degradation of specimens S1-R-00, S2-SC-8S and S5-SC-16S                                         | 77 |
| Table 5-5: Properties of specimens in group (B)                                                                       | 79 |
| Table 5-6: Ductility factor of specimens S3-SC-8D and S6-SC-16D                                                       | 83 |
| Table 5-7: Ductility of slabs S3-SC-8D and S6-SC-16D                                                                  | 83 |
| Table 5-8: Stiffness degradation of specimens S3-SC-8D and S6-SC-16D                                                  | 84 |
| Table 5-9: Ductility factor of specimen S4-SS-8S                                                                      | 89 |
| Table 5-10: Ductility of slab S4-SS-8S.                                                                               | 89 |
| Table 5-11: Stiffness degradation of specimen S4-SS-8S                                                                | 90 |
| Table 5-20: Specification of the examined specimens                                                                   | 92 |
| Table 5-21: Details of tested specimens.                                                                              | 93 |

| Table 5-22: Yielded load and ultimate failure load of specimens strengthened with FRP                                                                                         |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Table 5-23: Yielded load and ultimate failure load of specimens strengthened with CFR                                                                                         | P fan       |
| Table 5-24: Ductility factor of specimens strengthened with FRP fan                                                                                                           |             |
| Table 5-25: Values of ductility using the two methods for specimens strengthened w fan                                                                                        |             |
| Table 5-26: Material cost for strengthening of one hole with single area of CFRP String                                                                                       | ;98         |
| Table 5-27: Material cost for specimens strengthened with CFRP string                                                                                                         | 98          |
| Table 5-28: Material cost for specimen S4-SS-8S strengthened with steel bolts                                                                                                 | 98          |
| Table 5-29: Percentage of increased ductility and the cost of strengthening of each slab.                                                                                     | 100         |
| Table 5-30: Percentage of increased capacity and the cost of strengthening of each slab.                                                                                      | 100         |
| Table 5-31: The summary of punching shear capacities calculation of tested specimens to ECP.                                                                                  | _           |
| Table 5-32: The summary of punching shear capacities calculation of tested specimens to JGCE at (d/2) from the outermost peripheral line of CFRP string                       | •           |
| Table 5-33: The summary of punching shear capacities calculation of tested specimens to ACI 318 at $(d/2)$ from the outermost peripheral line of CFRP string                  |             |
| Table 5-34: Summary of the increasing ratios in punching shear failure load acl experimental testes compared with the expected punching shear capacity calculated using codes | g different |

# LIST OF FIGURES

| Figure 2.1 Telekom Tower, Kuala Lumpur, Malaysia, 310 m (1,017 ft) tall, has 77 floors Constructed with flat slab system in 2001               |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2.2 Piper's Row Car Park, Wolverhampton, UK, 1997(built in 1965)4                                                                       |
| Figure 2.3 Critical shear perimeter of internal, external and corner column [1]5                                                               |
| Figure 2.4 Critical shear perimeter a) without drop panel b) with column head [1]6                                                             |
| Figure 2.5 Loaded area and critical shear perimeter of interior column [1]6                                                                    |
| Figure 2.6. Influence of loaded area on punching shear capacity [3]8                                                                           |
| Figure 2.7 The design cross section with different column shape [3]9                                                                           |
| Figure 2.8 Distribution of nominal shear forces along the control perimeter at 0.5d from the column face for rectangular and square column [6] |
| Figure 2.9 The two configurations of prestressed bolts arrangement in the tested slabs [20]                                                    |
| Figure 2.10 The arrangement of steel bolts at tested specimens [7]12                                                                           |
| Figure 2.11 Different anchorage technique approaches [8]                                                                                       |
| Figure 2.12 Post installed shear reinforcement: (a) typical cross section; (b)view of nut, washers and bar; and (c) detail of anchor head [9]  |
| Figure 2.13 Plates and stud's arrangement in the tested specimens [10]15                                                                       |
| Figure 2.14 FRP rods and screw bolts arrangement on slab around column [11]16                                                                  |
| Figure 2.15 Different strengthening systems: a) case of steel links; b) case of FRP stirrups [12]                                              |
|                                                                                                                                                |
| Figure 2.16 CFRP strengthening schemes [13]                                                                                                    |
| Figure 2.17 Frame used for plate pre-stressing [14]                                                                                            |
| Figure 2.18: Applied strengthening types & reinforcement details of concrete slabs [15]20                                                      |
| Figure 2.19 Strengthening technique using FRP fan [16]                                                                                         |
| Figure 2.20 FRP anchor layout [17]                                                                                                             |
| Figure 2.21 Shape and manufacture filament                                                                                                     |
| Figure 2.22 Shape of assembled roving and direct roving                                                                                        |
| Figure 2.23 Shape of fiber glass copped strand27                                                                                               |

| Figure 2.24 Shape of fiber glass mats2                                                         |
|------------------------------------------------------------------------------------------------|
| Figure 2.25 Shape of unidirectional carbon fabrics                                             |
| Figure (2.26-a) The different types of fabrics                                                 |
| Figure (2.26-b) Shape of Hybrid fabric (twill weave) of aramid and carbon                      |
| Figure 3.1 Coarse aggregate utilized in the Mix                                                |
| Figure 3.2 Fine aggregate utilized in the Mix                                                  |
| Figure 3.3 Concrete dimension and reinforcement details of slab-interior column connection     |
| 3                                                                                              |
| Figure 3.4 The wooden form coated with oil, and arrangement of the steel mesh4                 |
| Figure 3.5 PVC pipes used to keep the holes positions                                          |
| Figure 3.6 The operation of casting concrete at the wooden form4                               |
| Figure 3.7 The mechanical vibrato used during casting                                          |
| Figure 3.8 The surface of casted specimens after it has been leveled                           |
| Figure 3.9 Test set up for the examined specimen4                                              |
| Figure 3.10 Locations of LVDTS4                                                                |
| Figure 3.11 Where the electrical strain gauge installed from the column face                   |
| Figure 3.12 The steps of installation the electrical strain gauge                              |
| Figure 3.13 The setting of hydraulic jack, load cell with the specimens                        |
| Figure 3.14 Preparation steps of the slabs for strengthening with CFRP fan48                   |
| Figure 3.15 Installation steps of CFRP fan                                                     |
| Figure 3.16 Installation steps of steel bolts                                                  |
| Figure 3.17 Slab S2-SC-8S strengthened with eight CFRP string                                  |
| Figure 3.18 Slab S3-SC-8D strengthened with 16 CFRP string double area of carbon fiber string  |
| Figure 3.19 Slab S4-SS-8S strengthened with eight steel bolts                                  |
| Figure 3.20 Slab S5-SC-16S strengthened with 16 CFRP string single area of carbon fiber string |
| Figure 3.21 Slab S6-SC-16D strengthened with 16 CFRP string double area of carbon fiber string |

| Figure 4.1 Cracking pattern for specimen S1-R-00 from tension side                         |
|--------------------------------------------------------------------------------------------|
| Figure 4.2 Load central deflection for specimen S1-R-00                                    |
| Figure 4.3 Vertical & Horizontal steel strain for specimen S1-R-00 near the column area57  |
| Figure 4.4 Cracking pattern for specimen S2-SC-8S from tension side                        |
| Figure 4.5 Load central deflection for specimen S2-SC-8S                                   |
| Figure 4.6 Vertical & Horizontal steel strain for specimen S2-SC-8S near the column area59 |
| Figure 4.7 Cracking pattern for specimen S3-SC-8D from tension side                        |
| Figure 4.8 Load central deflection for specimen S3-SC-8D                                   |
| Figure 4.9 Vertical & Horizontal steel strain for specimen S3-SC-8D near the column area   |
| Figure 4.10 Cracking pattern for specimen S4-SS-8S from tension side                       |
| Figure 4.11 Load central deflection for specimen S4-SS-8S                                  |
| Figure 4.12 Vertical & Horizontal steel strain for specimen S4-SS-8S near the column area  |
| Figure 4.13 Showed splitting of CFRP sting at failure65                                    |
| Figure 4.14 Cracking pattern for specimen S5-SC-16S from tension side65                    |
| Figure 4.15 Load central deflection for specimen S5-SC-16S                                 |
| Figure 4.16 Vertical & Horizontal steel strain for specimen S5-SC-16S near the column area |
| Figure 4.17 Cracking pattern for specimen S6-SC-16D from tension side                      |
| Figure 4.18 Load central deflection for specimen S6-SC-16D                                 |
| Figure 4.19 Vertical & Horizontal steel strain for specimen S6-SC-16D near the column area |
| Figure 5.1 Cracking pattern for specimen S1-R-0071                                         |
| Figure 5.2 Cracking pattern of specimen S2-SC-8S                                           |
| Figure 5.3 Cracking pattern of specimen S5-SC-16S                                          |
| Figure 5.4 Showed splitting of CFRP string at failure73                                    |
| Figure 5.5 Load deflection curve of specimens S1-R-00, S2-SC-8S and S5-SC-16S74            |
| Figure 5.6 Load deflection curve of specimens S1-R-00, S2-SC-8S and S5-SC-16S75            |
| Figure 5.7 Definition of yield deflection                                                  |