Cairo University

Faculty of Veterinary Medicine

Department of Cytology and Histology

Cell Apoptosis and Its Relation to Cancer Treatment

A thesis presented

 $\mathbf{B}\mathbf{y}$

Zainab Sabry Othman Ahmed

(B.V. Sc. 2010; Cairo University)

(M.V. Sc. 2013; Cairo University)

For the Degree of

Ph.D.

(Cytology & Histology)

Under supervision of

Prof. Gehad Abd El-Fattah Hassan Elbargeesy

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University

Prof. Fawzy Abd Elhakeem Mohamed Elnady


Professor of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University

Prof. El-Sayed Mosallam Mohammed Mosallam

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University

Prof. Q. Ping Dou

Professor of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA.

APPROVAL SHEET

Cell Apoptosis and Its Relation to Cancer Treatment

Ph.D. thesis

 $\mathbf{B}\mathbf{v}$

Zainab Sabry Othman Ahmed

(B.V.Sc.2010; Cairo University)

(M.V. Sc.2013; Cairo University)

APPROVAL COMMITTEE

Prof. Mohammed Ibrahim Abd EL-Aziz

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Alexandria University.

Prof. Moukhtar Hanafy Gad Moussa

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University.

Prof. Gehad Abd El-Fattah Hassan Elbargeesy

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University.

Prof. El-Sayed Mosallam Mohammed Mosallam

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University.

Prof. Fawzy Abd Elhakeem Mohamed Elnady

Professor of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University.

SUPERVISION SHEET

Cell Apoptosis and Its Relation to Cancer Treatment

Ph.D. thesis

 $\mathbf{B}\mathbf{y}$

Zainab Sabry Othman Ahmed

(B.V.SC.2010; Cairo University)

(M.V. Sc.2013; Cairo University)

SUPERVISION COMMITTEE

Prof. Gehad Abd El-Fattah Hassan Elbargeesy

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University.

Prof. El-Sayed Mosallam Mohammed Mosallam

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University.

Prof. Fawzy Abd Elhakeem Mohamed Elnady

Professor of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University.

Prof. Q. Ping Dou

Professor of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA.

Name of candidate: Zainab Sabry Othman Ahmed

Date of Birth: 10-09-1988, Giza

Nationality: Egyptian

Specialization: Cytology and Histology

Degree: Doctorate of Philosophy

Title of thesis: Cell apoptosis and its relation to cancer treatment

Supervisors:

Prof. Gehad Abd El-Fattah Hassan Elbargeesy

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University.

Prof. El-Sayed Mosallam Mohammed Mosallam

Professor of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University.

Prof. Fawzy Abd Elhakeem Mohamed Elnady

Professor of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University.

Prof. Q. Ping Dou

Professor of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA.

ABSTRACT

Apoptosis is one of programmed cell death pathways, it is a physiological process through which the animal could organize the number of cells in tissues. Failure of apoptosis results in different diseases including cancer. Prostate cancer remains the second leading cause of cancer related death in men. Therefore, induction of apoptosis has become one of the most effective strategies for cancer treatment. In our study, we induced apoptosis via targeting the ubiquitin proteasome system (UPS). Inhibition of UPS was achieved by using proteasome inhibitors mainly natural 19S inhibitors as isothiocyanates (ITCs) which found abundantly in cruciferous vegetables. We hypothesize that ITCs as electrophiles could interact with the catalytic triads (CYS, HIS and ASP) of the 19S associated USP14 and UCHL5, ultimately inhibiting their activities. Docking and biochemical results suggest that ITCs are potent inhibitors of UCHL5 than USP14. Indeed, Ub-VS assay confirmed the inhibitory activity of each ITC as the ubiquitin binding activity of UCHL5 and USP14. This inhibition of USP14 and UCHL5 caused increased levels of USP14 and UCHL5 proteins but not the third 19S DUB, RPN11 suggesting feedback loop activation and further supporting that ITCs are inhibitors of proteasomal cysteine DUBs. Also, DUBs inhibition was associated with significant accumulation of ubiquitinated proteins, induction of apoptosis, inhibition of cells proliferation, suppression of cell invasion and degradation of androgen receptor which is considered an important driver of castration resistance prostate cancer (CRPC). Curcumin treatment induced apoptosis and downregulation of androgen receptor in a dose and time dependent manner. Chemical inhibitors of proteasome exhibited antiproliferative effect and induced apoptosis in a dose and time dependent manner. Bortezomib showed a synergetic effect with b-AP15 in induction of apoptosis and downregulation of androgen receptor variant 7. Knocking down of USP14 or UCHL5 increased the sensitivity of the knocked down cells to the anticancer therapy. Our finding of ITCs as proteasomal cysteine DUB inhibitors should provide insightful information for designing, discovering and developing potent, specific 19S-DUB inhibitors for cancer therapies.

Key words:

Apoptosis, Ubiquitin proteasome system, Deubiquitinating enzymes, USP14, UCHL5, Isothiocyanate, BITC, PEITC, SFN, Curcumin, Androgen receptor, Castration resistant prostate cancer.

DEDICATION

I dedicate this work to whom my heart feels thanks; to the first teacher of mankind, prophet Muhammed (Peace and blessings be upon him), to all members of my great family, especially my kind father (Sabry Othman Ahmed), my mother (Amaal Hussein), my lovely sisters; Huda and Eman, my brother Ahmed, Eman's family especially Mariam and Yahia and to my aunt Fatimah Hussein, to the souls of who passed away and left this world; my grandparents, my uncle Muhammed Hussein, my aunts especially my aunt Karimah Hussein ,Sheikh Saeed Al-Sharaawy and my professors especially my dear supportive Prof. Samir El-Shafeey who taught me a lot, may Allah forgive all of them, accept their good deeds and grant them with Al-Ferdous Al-A'ala, to all my scholars, shyoukh, my dear professors especially my supervisors; Prof. Gehad El-Bargeesy, Prof. El-Sayed M. M. Mosallam, Prof. Fawzy Elnady and Prof. Q. Ping Dou and also to my dear professor Moukhtar H.G. Moussa, to my colleagues at Cytology and Histology department, Faculty of Veterinary Medicine, Cairo University, to my colleagues at Dou Lab, to the beautiful and supportive people of Michigan especially the Muslim community and the volunteers of the University Islamic Center of Detroit (Cass Masjid), Muslim breakfast program and the Muslim center, to my lovely friends in Egypt and all over the world and to my dear students who I really feel proud of them, and I wish for all the best in this life and hereafter.

<u>Acknowledgement</u>

In fact, the prayerful thanks, at first, to Allah, our merciful GOD, who gives me everything I have.

I would like to express my sincere thanks, deepest gratitude and appreciation to my supervisors; Prof. Gehad Abd Elfattah Hassan Elbargeesy, professor of Cytology and Histology, Faculty of Veterinary Medicine - Cairo university for his kind supervision and guidance, Professor EL-Sayed M. M. Mosallam, professor of Cytology and Histology, Faculty of Veterinary Medicine - Cairo university for his kind supervision and endless support, professor Fawzy Abd Elhakeem Mohamed Elnady, professor of Anatomy and Embryology, Faculty of Veterinary Medicine- Cairo university for his kind supervision, wisdom and valuable advice and I really appreciate his continuous support and encouragement and professor Q. Ping Dou for his kind supervision, continuous support, commitment and his endless help and guidance and I'm grateful to him for this opportunity to be one of his lab members for two years that taught me many things.

Deep gratitude and appreciation to professor Moukhtar H.G. Moussa, professor of Cytology and Histology, Faculty of Veterinary Medicine - Cairo university for his endless support and help and I really appreciate his kind supervision during my Master study which indeed helped me a lot during my PhD work.

Special thanks to my colleagues at Dou lab for their continuous help and support, thanks to my co-authors for their hard work in the published research article, thanks to Dr. Xin Li and Dr. Feng Li for VB-VS data and to Kush Patel and Hassan Ali Cheaito for their work in the computer docking. Thanks to all other lab members who spent time with me and taught me anything especially Dr. Reda Ahmed, Eunice and Claire Soave. Thanks to all members at Barbara Ann Karmanos institute and to its police service which used to give me arid to my home at midnight because of my late work.

Grateful thanks to the beautiful community of Michigan who supported me a lot, special thanks to my dear friend Dr. Amal Hamza Hejab who spent her time and efforts to support me and to encourage me for studying and writing my thesis, and I prayed for her to succeed in her life. Thanks to my dear volunteers in the University Islamic Center of Detroit (Cass Masjid), Muslim breakfast program and the Muslim Center for their beautiful souls that inspired me and supported me a lot. Special thanks to my Indonesian and Malaysian friends who provide a peaceful and wonderful environment in Michigan. Endless thanks and appreciation to the Egyptian community in Michigan and our Egyptian friends who helped and supported me a lot during that time especially Nada Khodair.

Thanks are extended to my professors and to the head of Cytology and Histology department; Professor. Saad Elgharabawy for his support and help. Also, my appreciation to Prof. Mamdouh El-Shammaa and Prof. Hany Elhabbak for their role in my academic life and their continuous encouraging and support. Special and grateful thanks to the soul of my dear professor Samir El-Shafeey for his endless support, quidance and help, may Allah accept his good deeds.

Thanks to Prof. Hossny Elbanna, the professor of Pharmacology, Faculty of Veterinary Medicine, Cairo University for his continuous support and help. Thanks to my Shyoukh especially Sheikh Mohammed Abd El-Rahman Faried Al-Azhari, to my scholars, my colleagues, to all my lovely friends especially those who helped and encouraged me to apply for this mission; Ghazal Nabil, Hanaa Salah, Nehal Kamal, Zeinab Ibrahim and Eman El-Maghraby. Special thanks to my dear students who always support and inspire me a lot.

Great thanks to my beloved family members for their patience, help and encouragement, especially to my kind parents who supported me too much during this work, may Allah bless them more, grant them with the best life and accept their good deeds.

CONTENTS

Page	9
INTRODUCTION1	
REVIEW OFLITERATURE4	
 Apoptosis	
• Knockdown of 19s-associated DUBs45	
MATERIALS AND METHODS47	
A- Results of isothiocyanates	
DISCUSSION140	
CONCLUSION147	
SUMMARY149	
REFERENCES154	
LIST OF ABBREVIATIONS203	
ARARIC SUMMARV	

List of figures

No. of figure	Title	Page number
0		
1	Ubiquitin proteasome pathway	8
2	Protein degradation by 26S proteasome	9
3	The molecular structure of 26S proteasome	10
4	Domain structures of full-length androgen receptor and androgen receptor splice variants	29
5	The chemical structure of the selected drugs	48
6	Morphology and proteins expression level in the parental, non-targeted and Knocked down 22Rv1 prostate cancer cells without treatment	55
7	Determination of interactions of BITC, PEITC and SFN with 19S-associated DUBs USP14 and UCHL5 by computational docking.	58
8	Inhibition of active site-directed labeling of proteasomal DUBs by BITC, PEITC and SFN	59
9	The cytotoxic effect of isothiocyanates on parental 22Rv1 prostate cancer cells.	60
10	BITC shows morphological changes and cell death of 22Rv1 in a dose dependent manner at 50X magnification.	61
11	BITC shows morphological changes and cell death of 22Rv1 in a dose dependent manner at 100X magnification	62
12	SFN shows morphological changes and cell death of 22Rv1 in a dose dependent manner at 50X magnification	63
13	SFN shows morphological changes and cell death of 22Rv1 in a dose dependent manner at 100X magnification.	64

Figure	Title	Page number
14	Crystal violet staining of prostate cancer 22Rv1 cells treated with BITC	65
15	Crystal violet staining of prostate cancer 22Rv1 cells treated with SFN	66
16	Inhibition of prostate cancer 22Rv1 cell invasion (wound healing assay) by BITC	67
17	Inhibition of prostate cancer 22Rv1 cell invasion (wound healing assay) by SFN	68
18	Inhibition of MDA-MB-231 breast cancer cells invasion (wound healing assay) by BITC	69
19	Inhibition of MDA-MB-231 breast cancer cells invasion (wound healing assay) by PEITC.	70
20	Inhibition of MDA-MB-231 breast cancer cells invasion (wound healing assay) by SFN	71
21	The Kinetic effect of BITC on 22Rv1 prostate cancer cell line	72
22	The Kinetic effect of SFN on 22Rv1 prostate cancer cell line	73
23	ITCs cause degradation of ARv7, accumulate ubiquitinated proteins and induce cell apoptosis in prostate cancer 22Rv1 cells in a time dependent manner	74
24	Inhibition of calpain and caspase activity by using calpain inhibitor (CAPT) and caspase inhibitor (Z-VAD) in 22Rv1 prostate cancer cells.	75
25	Pretreatment of BITC treated cells with CAPT or Z-VAD for inhibition of calpeptin and caspase activity.	76
26	Comparison between the effect of galetrone and BITC treatment on AR expression level in 22Rv1 cells pretreated with CAPT	77
27	The effect of BITC on the cell viability of KD 22Rv1 cell lines.	78
28	Crystal violet staining of KD 22Rv1 cells treated with different concentrations of BITC	79

Figure	Title	Page
		number
29	BITC induces morphological changes and apoptosis in addition to degradation of androgen receptor and accumulation of ubiquitinated proteins in KD 22Rv1 prostate cancer cells	80
30	Degradation of androgen receptors in parental and KD 22Rv1 and accumulation of ubiquitinated protein after their treatment with BITC for short time.	81
31	The cytotoxic effect of curcumin on prostate cancer 22Rv1 cell line.	100
32	Curcumin shows morphological changes and cell death of 22Rv1 in a dose dependent manner.	101
33	Crystal violet staining of prostate cancer 22Rv1 cells treated with curcumin	102
34	Inhibition of prostate cancer 22Rv1 cell invasion (wound healing assay) by curcumin	103
35	Inhibition of MDA-MB-231 breast cancer cells invasion (wound healing assay) by curcumin	104
36	Curcumin induces cell apoptosis in prostate cancer 22Rv1 cells associated with degradation of ARV7 and accumulation of ubiquitinated proteins in a time dependent manner	105
37	The effect of curcumin on the 19S associated DUBs, USP14 and UCHL5	106
38	The effect of different doses of curcumin on KD 22Rv1 cell lines	107
39	Crystal violet staining of KD 22Rv1 cells treated with different concentrations of curcumin	108
40	Curcumin induces morphological changes and cell apoptosis in addition to degradation of androgen receptor and accumulation of ubiquitinated proteins in KD 22Rv1 prostate cancer cells.	109
41	The cytotoxic effect of BTZ on prostate cancer 22Rv1 cells	116

Figure	Title	Page
		number
42	BTZ induces morphological changes and cell death of 22Rv1 in a dose dependent manner	117
43	Crystal violet staining of prostate cancer 22Rv1 cells treated with different concentrations of BTZ	118
44	The cytotoxic effect of different concentrations of BTZ on KD prostate cancer 22Rv1 cells	119
45	The effect of 20nM BTZ on KD prostate cancer 22Rv1 cells	120
46	The effect of 100nM of BTZ on different KD 22Rv1 prostate cancer cell lines	121
47	The cytotoxic effect of combination of BTZ and b-AP15 on prostate cancer 22Rv1 cells	122
48	Combination of BTZ and b-AP15 induces more cell apoptosis and degradation of ARV7 in 22Rv1 prostate cancer cells.	123
49	The cytotoxic effect of b-AP15 on 22Rv1 prostate cancer cells	124
50	The effect of pretreatment of BTZ treated 22Rv1 cells with IU1	125
51	The cytotoxic effect of the combination of BTZ with BITC or PEITC on prostate cancer 22Rv1 cells.	126
52	The cytotoxic effect of RA-9 and VLX1570 on prostate cancer 22Rv1 cells	127
53	Comparison between the effect of VLX1570 and RA-9 on 22Rv1 prostate cancer cell lines.	128
54	The cytotoxic effect of VLX1570 on KD 22Rv1 prostate cancer cells	129
55	The cytotoxic effect of RA-9 on KD 22Rv1 prostate cancer cells	130
56	The effect of 7µM RA-9 on the cell viability of KD 22Rv1 cell lines	131

Introduction

Apoptosis is one of programmed cell death pathways (Ouyang et al., 2012), it is a physiological process through which organisms could regulate the number of cells in tissues (Ellis et al., 1991). Failure of apoptosis results in many diseases including cancer due to the uncontrolled proliferation of cells that leads to tumor growth (Hoeppner et al., 1996 and Evan and Vousden, 2001). Therefore, one of the most important strategies in cancer treatment is induction of apoptosis (Hong and Sporn, 1997; Jaffrézou et al., 1998; Debatin, 2000; Kelloff et al., 2000 and Woynarowska and Woynarowski, 2002). Induction of apoptosis could be through targeting the ubiquitin proteasome system (UPS) which controls different cellular processes and is considered the major regulator of protein degradation in eukaryotes (Hershko and Ciechanover, 1998; Goldberg, 2007; Finley, 2009; Schrader et al., 2009 and D'Arcy and Linder, 2012).

The ubiquitin proteasome system (UPS) is composed of a small molecule of ubiquitin and large multiunit complex called 26S proteasome, ubiquitin molecule is responsible for tagging of the protein substrate to the 26S proteasome for its degradation. The 26S proteasome is composed of 20S barrel shaped structure which is responsible for the proteolytic activity of the proteasome capped on each end by one or two 19S regulatory particles (Hershko et al., 1983; Groll et al., 1997; Amerik and Hochstrasser, 2004; Goldberg, 2007; Lee et al., 2010; D'Arcy and Linder, 2012 and Nguyen et al., 2013). Ubiquitination is a reversible process that includes ubiquitin

ligating (E3 ligase) and could be reversed by deubiquitination through deubiquitinating enzymes (DUBs) (Liao et al., 2017). Deubiquitinating enzymes (DUBs) are responsible for removal of ubiquitin or ubiquitin like chain from the target protein before its degradation in the 20S proteasome in eukaryotes (Song and Rape, 2008 and Aressy et al., 2010).

There are approximately 100 DUBs encoded by human genome (Liao et al., 2017), three of them are associated with the 19S proteasome in the mammalian cells (Lee et al., 2011 and D'Arcy et al., 2015). Ubiquitin specific protease 14 (USP14) and Ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5) belong to cysteine proteases class while the third one is proteasome regulatory particle lid subunit RPN11 (RPN11) and it belongs to the metalloprotease class (Lee et al., 2011; D'Arcy et al., 2015 and Wang and Linder, 2015). These proteasome's associated DUBs play an important role in the maintenance of ubiquitin homeostasis (Lee et al., 2011 and D'Arcy et al., 2015).

Since tumor tissues show overexpression of different DUBs (Daviet and Colland, 2008; Wang et al., 2016 and Liao et al., 2017), DUBs could be an important target for treatment of different cancers including prostate cancer which is considered the second leading cause of cancer related death in men (Jemal et al., 2007; Knudsen and Kelly, 2011 and Lu and Luo, 2013). Also, DUBs are associated with the stabilization, co-regulation and transcription of androgen receptor (AR) (Liao et al., 2017) which is considered the fundamental driver

for the progression of castration resistant prostate cancer (CRPC) (Tamura et al., 2007; Chen et al., 2008 and Attard et al., 2009). Therefore, inhibition of these proteasome associated DUBs, or their silence may be a promising strategy for downregulation of androgen receptor (AR) and induction of apoptosis in prostate cancer cells. The aim of this study is to obtain a potent natural or chemical compound that could inhibit the development of cancer, particularly prostate cancer and breast cancer which remain the second leading cause of cancer related death in men and women, respectively. In our study, we used different proteasome inhibitors including chemical inhibitors and natural compounds which present in cruciferous vegetables as broccoli, these natural compounds include isothiocyanates such as benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane (SFN) in addition to curcumin which was extracted from curcuma longa plant. We tested the inhibitory activity of these compounds on DUBs and observed the antiproliferative activity of these compounds on cell growth in addition to the relation between DUBs inhibition or silence and the expression of androgen receptor, particularly androgen receptor variant 7 (AR-V7) which has an important role in the progression of Castration resistant prostate cancer (CRPC). The present study should provide insightful information for designing, discovering and developing potent, specific 19S-DUB inhibitors for cancer therapies.