

Ain Shams University Faculty of Science

Processing of Some Microscopic Images Using Coherent Scanning Laser Microscope

Presented by Lena Khaled Hammad Mohamed

B.Sc. (Physics)

Ain Shams University

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in physics

Supervisors

Prof. Dr. Abdallah Mohamed Hamed

Professor of Theoretical Optics and laser, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

Prof. Dr. El Sayed Yehia El Zaiat

Professor of Optics, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

Dr. Tarek Abd- Elmotelb Al-Saeed

Date: 2018

Assistant Professor, Bio-medical Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Ain Shams University Faculty of Science

APPROVAL SHEET

Title of the M.Sc. Thesis

Processing of Some Microscopic Images Using Coherent Scanning Laser Microscope

Name of the Candidate Lena Khaled Hammad Mohamed

<u>Supervisors</u>	(<u>Signature</u>)
Prof. Dr. Abdallah Mohamed Hamed Physics Department	()
Faculty of science Ain Shams University	
Prof. Dr. El Sayed Yehia El Zaiat Physics Department	()
Faculty of science Ain Shams University	
Assist. Prof. Tarek Abd- Elmotelb Al-Saeed	()
Bio-medical Department	
Faculty of engineering	
Helwan University	

Name: Lena Khaled Hammad Mohamed

Degree: Master

Department: Physics – Optics Group

Faculty: Science

University: Ain Shams University

Graduation Date: June 2013

Registration Date: 2016

Acknowledgments

I wish to express my graduate and appreciation to **Prof. Dr. Abdallah Mohamed Hamed**, professor of theoretical optics and laser, Physics department, Faculty of Science, Ain Shams University, for suggesting the problem of research, for his continuous supervision, valuable discussion, and helpful guidance, through this work. His design of computer programs using mat-lab codes in this thesis are appreciated. Also, his careful reading of the thesis and analysis of the results is greatly acknowledged.

I want to thank **Prof. Dr. Fouad Saad El-deen El Diasty**, Head of the physics department, Faculty of Science, Ain Shams University, for his encouragement and submission of the thesis for arbitration.

Though he is not here he never left, and he is deeply missed. Thanks, **Prof. Dr. El-Sayed Yehia El Zaiat** for everything. Physics department, Faculty of Science, Ain Shams University.

My sincere thanks to **Dr. Tarek Abd- Elmotelb Al-Saeed**, Assistant Professor, Bio-medical department, Faculty of Engineering, Helwan University, for their encouragement and helpful advice.

Infinite love and thanks to my family especially my dear husband, Alaa Allah Mahmoud, whose unconditional love, patience and for being with me every time.

Abstract

Name: Lena Khaled Hammad Mohamed

Title: Processing of Some Microscopic Images Using Coherent Scanning

Laser Microscope

Submitted To: Physics Department, Faculty of Science, Ain Shams

University.

In this thesis, image processing of some blood images is investigated using the Coherent Scanning Laser Microscope (CSLM). It consists of two objectives arranged in tandem where the examined object is located in the common short focus. The object is mechanically scanned in its plane in synchronization with the electronic scanning in the detection plane in order to construct the image. The Resultant Point Spread Function (RPSF) is the product of the PSF corresponding to each objective while the Coherent Transfer Function is the convolution product of the objective apertures. While in the ordinary optical microscope only the PSF is governed by a solely objective lens while the collector or condenser lens governs the coherence. The CSLM has better lateral and axial resolution than the ordinary optical microscope.

In this work, an introduction is given in chapter 1 followed by three chapters. The basics of the CSLM are outlined in chapter 2. In chapter 3, we have selected two different models of apertures one in the form of the concentric unequal ratio of annuli and the second has longitudinal successive black and white strips made inside a circular aperture. We have computed the PSF in the two cases of modulation for the sake of lateral resolution improvement which extracted from the cut-off spatial frequency of the

diffraction pattern. Consequently, the RPSF is obtained in case of confocal imaging provided with equally modulated apertures. A comparison of the PSF with circular and annular apertures is made. In addition, we have computed the coherent transfer function (CTF) for the CSLM using the above models. The effect of depth of focus for the considered B/W concentric annuli is investigated. In chapter 4, Erythrocytes blood images using the above-modulated apertures are applied on the CSLM and the corresponding reconstructed images are obtained. In addition, numerical and contour images are obtained from the input images. All the images are processed based on Fourier transform techniques and convolution operations. A Mat- Lab code is used in the computations. Finally, a conclusion and discussion are given.

Keywords: Coherent Scanning Laser Microscope, Point Spread Function, Modulated aperture, Image processing.

Table of contents:

List of figures	Vi
List of tables	ix
1 Introduction	1
1.1 introduction and previous work	
2 Basics of the Coherent Scanning Laser Microscope (CSLM)	8
2.1 Description of the Coherent Scanning Laser Microscope (CSLM)	
2.2 Imaging in the CSLM Microscope	9
2.3 The Resultant point spread function (RPSF) in the CSLM	11
2.4. The Coherent transfer function (CTF) in the CSLM	13
2.5. Lateral and Axial resolution in the CSLM	13
3 The CSLM provided with some modulated apertures	19
3.1 First model of B/W unequal annuli	
3.1.1.Calculation of the RPSF for the 1st model	21
3.1.2. Computation of the image of a point corresponding to the 1st	22
model.	
3.2. The 2nd model of B/W equal strips inside the circular apertur.	
3.2.1 Computation of the RPSF the 2nd model	22
3.2.2 Computation of the image of a point corresponding to the 2nd	25
model	
3.2.3. Computation of the RPSF for the 2 nd model	27
3.2.4. Computation of the image of a point corresponding to the 2nd	28
Model	
3.3. Calculation of the CTF and defect of focus for modulated	28
aperture.	
3.3.1. Computation of the Coherent Transfer Function (CTF) using	28
CSLM	
3.3.2. A depth of focus.	29
3.4. Results and discussion.	31
4 Image processing of some microscopic images using CSLM	39
provided with the concentric unequal annuli.	
4.1 Introduction	
4.2 The image used in the processing	39
4.3 Numerical images corresponding to input images	39
4.4 The image contours	40
4.4.1. Computation of the blood cell diameter from the contour image	40
4.5 The Fourier spectrum of the input image	41
4.5.1. Fourier spectrum of the modulated aperture	41

4.6 The reconstructed image using B/W unequal annuli and disscusion of results.	42
Conclusion	53
References	54
Appendix 1	62

List of figures

- 1.1 Conventional optical microscope.
- 1.2 Coherent Scanning Laser Microscope (CSLM).
- 1.3 Principle of the confocal microscope.
- 2.1 Principle of a confocal microscope.
- 2.2 Image formation in a confocal (non-fluorescence) microscope. The intensity in the detector plane given by the convolution of the product of the scanned object and the illuminating amplitude point spread function with the amplitude point spread function of the collector lens. The pinhole integrates the amplitude over the back focal plane of the collector lens.
- 2.3 Coherent microscope for imagines a point object using pupils P_1 and P_2 .
- 2.4 Pupil function autocorrelation
- 2.5 Depth of field ranges.
- 2.6 Two points: one is in-focus and one out-of-focus. Each produces a spherical wavefront. The wavefront approaches the entrance pupil of an optical system that subtends an angle α as shown. The maximum distance between the wavefronts, W, occurs at angle α .
- 3.1 The Modified aperture of concentric black and white annuli of ratio 2: 1 respectively is shown in the model 1. It is shown four transparent annuli each has1 unit and four concentric black annuli each has 2 units. The total radius has 12 units represent the maximum radius.
- 3.2 This model has concentric black and transparent annuli, where the number of black annuli = the number of transparent annuli = 4 in the ratio of 2:1 from the center.

- 3.3 The Modified aperture of concentric black and white annuli of ratio 10: 1 respectively is shown in the model 1. It is shown four transparent annuli each has 1 unit and four concentric black annuli each has 10 units. The total radius has 40 units represent the maximum radius.
- 3.4 This model has concentric black and transparent annuli, where the number of black annuli = the number of transparent annuli = 4 in the ratio of 10:1 from the center
- 3.5 The defect of focus in case of B/W concentric annuli. Eight strips are considered for simplicity of the graph. The wavefront defect of focus corresponding to this model is drawn. The total numerical aperture is NA = n sin α . The successive NA for the concentric annuli is $\sin\alpha_1$, $\sin\alpha_2$, $\sin\alpha_3$, $\sin\alpha_4$, $\sin\alpha_5$, $\sin\alpha_6$, $\sin\alpha_7$ and $\sin\alpha_8$ as shown in the Fig. R is the wavefront radius and w is the aberration wavefront shift.
- 3.6 PSF of the model (1) of the radial coordinate (r) in the radial plane.
- 3.7 PSF of the model (2) of the radial coordinate (r) in the radial plane.
- 3.8 PSF of the circular aperture of the radial coordinate (r) in the radial plane.
- 3.9 PSF of the annular aperture of the radial coordinate (r) in the radial plane.
- 3.10-c PSF of the model (2) as a function of the radial coordinate (r) in the Fourier plane. The cut-off spatial frequencies are at r = 58.86.18, 170, 420 nm.
- 3.11 The plot of the 1st model and its corresponding PSF using reduced coordinates.
- 3.12 RPSF of the model (1) of the radial coordinate (r) in the radial plane.
- 3.13 RPSF of the model (2) of the radial coordinate (r) in the radial plane.
- 3.14 RPSF of the first model with equal concentric annuli of the radial coordinate (r) in the radial plane.

- 3.15 RPSF of the second model with equal concentric annuli of the radial coordinate (r) in the radial plane.
- 3.16 IOAP of the model (1) of the radial coordinate (r) in the radial plane.
- 3.17 IOAP of the model (2) of the radial coordinate (r) in the radial plane.
- 3.18 IOAP of the first model with equal concentric annuli of the radial coordinate (r) in the radial plane.
- 3.19 IOAP of the second model with equal concentric annuli of the radial coordinate (r) in the radial plane.
- 3.20 The image of the CTF for the 1st model and its plot is shown in the left side while the corresponding CTF image and its plot for circular aperture shown in the right side. The CTF is computed from the direct convolution of the two apertures.
- 3.21 The image of the CTF for the 2nd model and its plot is shown in the left side while the corresponding CTF plot shown in the right side. The CTF is computed from the direct convolution of the two apertures. The strip width = 10, and matrix dimensions is 512×512 pixels for the CTF while it is only 256×256 pixels for the modulated apertures.
- 3.22 Coherent Transfer Function (CTF) using two annular symmetric apertures. The total width is 256 pixels which equals two times the aperture diameter.
- 3.23 Computation of the CTF for the 1st model using two different techniques, on the left direct convolution product is shown while on the right FT technique is applied.
- 3.24 The image of the Fourier spectrum originated from the circular aperture provided with straight lines of black and transparent strips.
- 4.1- a Scanning- electron micrograph (SEM) of blood cells of dimensions 512×512 pixels
- 4.1-b The Grayscale image of blood cells of dimensions 512×512 pixels.
- 4.2-a Another (SEM) image of blood cells of dimensions 512×512 pixels.

- 4.2-b The Grayscale image of blood cells of dimensions 512×512 pixels.
- 4.3-a A Low number of red blood cells of dimensions 512×512 pixels.
- 4.3-b Grayscale image corresponding to the low number of red blood cells shown in the figure (4.3- a).
- 4.4 The Numerical image of the BD image of dimensions 64×64 pixels.
- 4.5-a Contour with the major diameter of the blood cell at (241, 475) pixels.
- 4.5-b Contour with the major diameter of the blood cell at (384, 374) pixels.
- 4.5-c Contour with the minor diameter of the blood cell at (348, 472) pixels.
- 4.5-d Contour with the minor diameter of the blood cell at (271, 384) pixels.
- 4.6-a The amplitude spectrum corresponding to the image of isolated blood cells.
- 4.6-b The phase spectrum corresponding to the image of isolated blood cells.
- 4.7-a Reconstructed grayscale image corresponding to the original color image of red blood cells shown in the figure (4.1- a) using hypothetical CSLM provided with aperture outlined in the model 1.
- 4.7-b Reconstructed grayscale image corresponding to the original color image of red blood cells shown in the figure (4.2- a) using hypothetical CSLM provided with aperture outlined in the model 1.
- 4.7-c Reconstructed grayscale image corresponding to the original color image of red blood cells shown in the figure (4.3- a) using hypothetical CSLM provided with aperture outlined in the model 1.

List of tables

- 3.1 The cut-off spatial frequency for some different apertures graphically with PSF.
- 3.2 The cut-off spatial frequency for some different apertures graphically with RPSF.
- 3.3 The cut-off spatial frequency for some different apertures graphically with IOAP.

Chapter one

Introduction

Chapter 1 Introduction

1.1 Introduction and previous work.

Microscopy is the mechanical field of using microscopes to view objects that cannot be seen with the naked eye as shown in figure (1.1). There are three familiar branches of microscopy: optical, electron, and scanning probe microscopy. Optical and electron microscopy includes the diffraction, reflection, or refraction of electromagnetic radiation, electron beams interrelating with the specimen, and the collection of the scattered radiation to create an image. This process may be carried out by wide-field irradiation of the sample (for example standard light microscopy and transmission electron microscopy) or by scanning of a suitable beam over the sample (for example confocal laser scanning microscopy and scanning electron microscopy). Scanning probe microscopy contains the interaction of a scanning probe with the surface of the object of notice. The development of microscopy revolutionized biology, gave increase to the field of physical sciences [1].

Figure (1.1): Conventional optical microscope.

Chapter 1 Introduction

Optical or light microscopy includes passing visible light transmitted through or reflected from the sample through a single or multiple lenses to allow a magnified view of the sample.[2] The resulting image can be detected directly by the eye, imaged on a photographic plate or took digitally. The single objective lens with its attachments along with the suitable lighting equipment makes up the basic light microscope. The latest development is the digital microscope, which uses a CCD (Charge-Coupled Device) camera to focus on the show of interest and the image is shown on a computer screen.

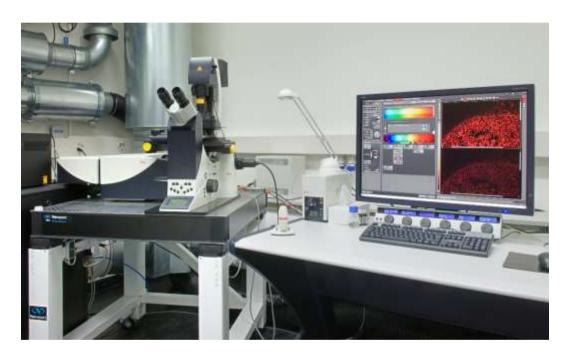


Figure (1.2): Coherent Scanning Laser Microscope (CSLM).