Role of Brown seaweed extract in modulation of COX-2 mediated inflammatory cascade in gamma irradiated rats

A Thesis

Submitted to the Department of Zoology, Faculty of Science, Ain shams University

For

The award of Ph. D. Degree in Zoology (Physiology)

Presented by

Ghada Azoz Mohamed (M.Sc.)

Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority

Supervisors

Prof. Dr. Nefissa H.Meky

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University

Prof. Dr. Eglal Abdel Moneam El- Deghidy

Professor of Biochemistry, Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority

Prof. Dr. Gamal Edres Abu Sinna

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University

Prof. Dr. Khaled Shaaban Mahmoud Azab

Professor of Biochemistry, Head of Radiation Biology Department, National Center for Radiation Research and, Technology, Atomic Energy Authority

Thesis Entitled

Role of Brown seaweed extract in modulation of COX-2 mediated inflammatory cascade in gamma irradiated rats

Thesis Supervisors:

Prof. Dr. Nefissa H.Meky

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University

Prof. Dr. Gamal Edres Abu Sinna

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University

Prof. Dr. Eglal Abdel Moneam El- Deghidy

Professor of Biochemistry, Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority

Prof. Dr. Khaled Shaaban Mahmoud Azab

Professor of Biochemistry, Head of Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority

ACKNOWLEDGEMENT

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my sincere gratitude To **Dr. Nefissa Hussin Meky** professor of physiology, faculty of science, Ain Shams University for her outstanding supervision, continuous encouragement, constant guidance and valuable advices.

I would like to express my thanks to **Dr. Gamal Edress Abu Sinna** professor of physiology, zoology department, faculty of Science Aim Shams University and I asked mercy and heaven from Allah to **Dr Gamal** and I am really wished that he is present with us Now.

I would like to express my gratitude to **Dr. Eglal**Abdel Moneam El-Deghidy professor of

Biochemistry, Radiation Biology Department National

center for Radiation Research and Technology, Atomic

energy Authority for effective supervision advice, willing assistance and, cooperation.

I am greatly indebted and grateful to **Dr. Khaled**Shaaban Mahmoud Azab professor of Biochemistry,
head of Radiation Biology Department, National
center for Radiation Research and Technology, Atomic
energy Authority for his precious advices during the
choosing of this research point, constructive guidance,
willing assistance and valuable discussion.

Ghada Azoz Mohamed

List of Contents

	Page
Acknowledgment	
List of Abbreviations	i
List of Figures	iv
List of Table	vi
Abstract	viii
Introduction	1
Aim of The work	5
Review of Literature	6
Materials and Methods	41
Results	50
Discussion	80
Summary	92
Conclusion	96
References	97
Arabic summary	

List of Abbreviations

γ	Gamma
BSWE	Brown Sea Weed Extract
CAT	Catalase
CO	Carbonyl
COX-1	Cyclooxygenase 1
COX-2	Cyclooxygenase2
DNA	Deoxyribonucleic acid
e NOS	Endothelial Nitric Oxide Synthase
ELISA	Enzyme-Linked Immuno Sorbent Assay
g	Gram (0.001kg)
GPX	Glutathione peroxidase
GSH	Glutathione
GSSG	Oxidized glutathione
Gy	Gray
h	Hour
Н	Hydrogen Radical
H2O2	Hydrogen peroxide
4-HNE	4-hydroxynonenal
HNE	Hydroxynonenal
i NOS	Inducible Nitric Oxide Synthase
IFN- α	Interferon alpha
IL-1B	Interleukin-1B

List of Abbreviations (Cont.)

IL-6	Iinterleukin-6
INOS	Inducible nitric oxide synthase
IR	Ionizing Radiation
LC-PUFA	Long Chain Polyunsaturated fatty acid
LOX	Lipooxidase
LPS	Lipo poly saccharide
M	Molar
m	Minute
mAU	milli-Absorbance Units
MCP-1	Adipocytokines like protein-1
MCP-1	Adipocytokines Like Protein-1
MDA	Malondialdehyde
mg	Milligram (0.001 gram)
Ml	Milliliter (0.001 liter)
n NOS	Neuronal Nitric Oxide Synthase
NAD+	Nicotinamide Adenine Dinucleotide
	(oxidized)
NADH	Nicotinamide Adenine Dinucleotide
	(reduced)
NADPH	Adenosine dinucleotide phosphate
NO	Nitric Oxide
NOS	Nitric oxide synthase

List of Abbreviations (Cont.)

O2	Superoxid Radical
ОН	Hydroxyl Radical
PGD2,	Prostaglandin D2
PGE2	ProstaglandinE2
PGE2	Prostaglandin E2
PGF2α	Prostaglandin F2alpha,
PGG2	Prostaglandin G2
PGH	Prostaglandin H
PGI2	Prostaglandin I2
PUFA	Polyunsaturated fatty acid
RNA	Ribonuclic acid
RNS	Reactive Nitrogen Species
ROS	Reactive Oxygen Species
SOD	Superoxide Dismutase
TBARS	Thiobarbituric Acid Reactive Substances
TNF- α	Tumor Necrosis Factor- Alpha
TXA2	Thromboxane A2
TXA2	Thromboxane
XDH	Xanthine Dehydrogenase
XO	Xanthine Oxide
XOR	Xanthine Oxidoreductase system

List of Tables

Table	Title	Page
(1)	Impact of BSWE and/or gamma irradiation on the liver COX2 activities (U/g fresh tissue) in albino rats	51
(2)	Impact of BSWE and/or gamma irradiation on the liver PGE2 concentration (Pg/g fresh tissue) in albino rats.	54
(3)	Impact of BSWE and/or gamma irradiation on the liver TNF- α concentration (Pg/g fresh tissue) in albino rats.	57
(4)	Impact of BSWE and/or gamma irradiation on the liver NO contents (mmol/g fresh tissue) in albino rats	60
(5)a	Impact of BSWE and/or gamma irradiation on the liver XO activities (U/mg fresh tissue) in albino rats.	64
(5)b	Impact of BSWE and/or gamma irradiation on the liver XDH activities (U/mg fresh tissue) in albino rats.	66
(6)	Impact of BSWE and/or gamma irradiation on the liver MDA level (µmole/g fresh tissue) in albino rats.	69

Table	Title	Page
(7)	Impact of BSWE and/or gamma irradiation on the liver SOD activities (U/g fresh tissue) in albino rats.	72
(8)	Impact of BSWE and/or gamma irradiation on the liver CAT activities (U/g fresh tissue) in albino rats	75
(9)	Impact of BSWE and/or gamma irradiation on the liver GSH contents (mg/g fresh tissue) in albino rats	78

List of Figures

Fig.	Title	Page
(1)	Schematic description of ionization events	9
	when water molecule exposed to ionizing	
	radiation.	
(2)	Steps involved in lipid peroxidation.	16
(3)	Glutathione oxidation reduction (Redox)	23
	Cycle.	
(4)	Xanthine oxidoreductase system.	26
(5)	Cyclooxygenase enzymes in prostaglandin	32
	synthesis	
(6)	Inhibitory effect of fucoxanthin	38
	metabolites on interaction between	
	adipose cells and macrophage cells	
(7)	Absorption and Metabolism of	40
	Fucoxanthin	
(8)	Impact of BSWE and/or gamma irradiation	52
	on the liver COX2 activities (U/g fresh	
	tissue) in albino rats	
(9)	Impact of BSWE and/or gamma irradiation	55
	on the liver PGE2 concentration (Pg/g	
	fresh tissue) in albino rats.	
(10)	Impact of BSWE and/or gamma	58
	irradiation on the liver TNF- α	
	concentration (Pg/g fresh tissue) in albino	
	rats.	

Fig.	Title	Page
(11)	Impact of BSWE and/or gamma	61
	irradiation on the liver NO contents	
	(mmol/g fresh tissue) in albino rats	
(12)a	Impact of BSWE and/or gamma	65
	irradiation on the liver XO activities	
	(U/mg fresh tissue) in albino rats.	
(12)b	Impact of BSWE and/or gamma irradiation	67
	on the liver XDH activities (U/mg fresh	
	tissue) in albino rats.	
(13)	Impact of BSWE and/or gamma	70
	irradiation on the liver MDA level	
	(µmole/g fresh tissue) in albino rats.	
(14)	Impact of BSWE and/or gamma	73
	irradiation on the liver SOD activities	
	(U/g fresh tissue) in albino rats.	
(15)	Impact of BSWE and/or gamma	76
	irradiation on the liver CAT activities	
	(U/g fresh tissue) in albino rats.	
(16)	Impact of BSWE and/or gamma	79
	irradiation on the liver GSH contents	
	(mg/g fresh tissue) in albino rats.	

Role of Brown seaweed extract in modulation of COX-2 mediated inflammatory cascade in gamma irradiated rats

Abstract

Ghada Azoz Mohamed

Ph. D Thesis, Ain Shams University (2018) Department of Zoology, Faculty of Science

Key words: Brown seaweed extract, Cyclooxygenase-2, Alpha-Tumor Necrosis Factor, Prostaglandin E2, Thiobarbituric acid, Xanthine Oxidoreducta sesystem, Superoxide Dismutase, Catalase, nitric oxide and Glutathione.

A variety of plants and seaweeds have been traditionally used in oriental folk medicine to treat inflammation induced by many environmental factors particularly that associated with serious inflammatory diseases. The present study was undertaken to examine the impact of brown seaweed extract (BSWE) from marine algae in the regulation of inflammatory responses induced by exposure to gamma radiation (τ - radiation). Rats were categorized into 5 groups as follow: Group (1): normal control group, (C) included rats neither treated nor irradiated, rats of this group were received orally an equivalent volume of distilled water (vehicle of BSWE) during the period of BSWE administration. Group (2): Irradiated group, (R) rats were exposed to 4 fraction doses

of gamma radiation (2 Gy every 3 days) and received orally an equivalent volume of distilled water during the period of BSWE administration. Group (3): (BSWE), rats were received 27 mg/kg/day aqueous extract of brown seaweed orally along period of the experiment. Group (4): (BSWE + R) This group includes rats received 27 mg/kg/day aqueous extract of brown seaweed orally for 7days before gamma irradiation, and the administration of the extract was extended during radiation exposure period (14 days). Group (5): (BSWE, R) rats of this group were received several doses of aqueous extract of brown seaweed via oral tube as group 3 and exposed to gamma irradiation as group 2 starting from the zero time of the experiment. The data obtained pointed to significant amelioration in the level of Cyclooxygenase-2 (COX-2), Tumor Necrosis Factor alpha (TNF-α) and ProstaglandinE2 (PGE2) even in group 4 or in group 5 when compared with irradiated rats in addition to remarkable amelioration in the redox status thiobarbituric acid (TBARS), Xanthine Oxidoreductase system (XOR), Superoxide Dismutase (SOD), Catalase (CAT), nitric oxide (NO), and Glutathione (GSH). It could be concluded that seaweed extract could be has a beneficial role in controlling COX-2 mediated inflammation and that may be partly due to its capability in adjusting cellular redox tone.

Introduction

Inflammation is part of the body's immune response. It happened when something harmful or irritating affects a part of the body and there is a biological response to try to remove it. The signs and symptoms of inflammation, specifically acute inflammation, revealed that the body is trying to heal itself. Inflammation does not mean infection, even when an infection causes inflammation. Infection is caused by a bacterium, virus or fungus, while inflammation is the body's response to it including the local reactions and the destruction changes; the destruction was affected by brown seaweed extract and the responses that lead to repair and healing (Firestein., 2011). Thus, inflammation is a fundamental pathologic process consisting of a dynamic complex of histological apparent, infiltration, cellular infiltration and mediator release occurred in affected blood vessels and adjacent tissues, also, in abnormal stimulation chemical, caused by physical, or biologic agent (Vijayalakshmi et al., 2015). Ionizing Radiation (IR) induces beneficial, as well as possible harmful effects to human population, representing one of the most important physical causes of inflammatory responses (Little., 2003).