

Relation between visceral obesity, Carotid Intima-Media Thickness and adenovirus 36 among female Adolescents

A Thesis Submitted for fulfillment of Ph.D. Degree of Childhood Studies, Faculty of Postgraduate Childhood Studies

By:

Dr. Walaa Saad Hanafy Mahmoud

Supervised by: Dr. Hanan Abd Allah El Gamal

Professor of Pediatrics
Faculty of Postgraduate Childhood Studies
Medical Studies for childern Department

Dr. Sahar Abd Elraufe El-Masry

Professor of Biological Anthropology National Research Centre

Dr. Muhammad Al-Tohamy Soliman

Professor of Biological Anthropology National Research Centre

Dr. Ayman Mohammad Nada

Professor of Pediatrics
Faculty of Postgraduate Childhood Studies
Medical Studies for childern Department

Dr. Amany Ebrahim

Lecturer of Pediatrics
Diabetes & Endocrinology unit
Cairo University
2018

Acknowledgments شکر وتقدیر

Thanks are all to ALLAH, the compassionate and the merciful, for helping me finish this work and for blessing me throughout my life by his compassion and generosity.

My profound gratitude is to professor **Dr. Hanan Algamal** Professor of Pediatric Ain shams University who supported me throughout the thesis process. It is a great honor to work under her supervision learned a lot about virology from her.

Words fail to express my sincere appreciation to professor **Dr.** Sahar Abd Elrauf Elmasry, Professor of Biological Anthropology, National Research Centre, for her valuable instructions, inspiring guidance and support throughout this work.

I would like to thank from my depth professor Dr. Muhammad Al-Tohamy, **Professor** Of **Biological** Anthropology, National Research Centre, for his support and help all through the journey of the thesis.

I would like to thank from my depth professor Dr. Ayman **Nada** Professor of Pediatric Ain shams University for his help and continues support and encouragement.

I would like to thank assistant **Prof. Dr. Amany Hossny** Of Clinical Pathology, National Research Centre, for her invaluable help and assistance she offered me in this study.

I would like to thank Dr.Muhamed Khaled, Researcher Of Biological Anthropology, National Research Centre, for his great help in doing the radiological part in the thesis.

I would like to thank **Dr. Amany Ebrahim** Lecturer of Pediatrics Diabetes & Endocrinology unit Cairo University for her help and encouragements.

Dr.Walaa saad

Dedication

اهداء

To my mother, my husband, my lovely Son and my little sweetly Daughter, Their presence in my life gaining to me The power and cheering up to wake me up Every morning and continue in life.

"Wishing God bless them for me". اهداء الى امى الغاليه وزوجى العزيز واو لادى. الى روح ابى فى الجنه ان شاء الله.

Dr. Walaa Saad

"قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ ما عَلَّمْتَنَا إِنَّكَ أَنْتَ لَنَا الْعَلِيمُ الْحَكِيمُ"

سورة البقرة

الآية(٢٣)

Contents

Title	Pages
List of abbreviations	i
Lists of tables	
	Iv
Lists of figures	Vii
Abstract	x
Introduction	1
Aim of work	4
Review of literature:	
Chapter 1: Adenovirus 36	5
Chapter 2: Visceral obesity	26
Chapter 3: Carotid intima	37
media thickness	
Chapter 4: Adolescence	50
Chapter 5: Anthropometry	61
Subjects and methods	73
Results	96
Discussion	137
Summary	164
Conclusions	169
Recommendations	170
References	171
Appendix A	***
Arabic Summary	1

List of abbreviations

Abbreviation	Name
4AAP	4-aminoantipyrine
ADP	Adenosine diphosphate
adv36	Human adenovirus36
AMH	Anti-Mullerian hormone
ApoE	Apolipoprotein E
ARD	Acute respiratory disease
ATP	Adenosine triphosphate
BMI	Body mass index
BP	Blood pressure
CCR7	C-chemokine receptor 7
CCT	Ciliocytophthoria
CHD	Coronary heart disease
CHER	Cholesterol esterase
CHOD	Cholesterol oxidase
c-IMT	Carotid intima-media thickness
CM	Chylomicron
CPE	Cytopathic effect
CRF	Cardiovascular risk factors
CT	Computed tomography
CVD	Cardiovascular disease
DCs	Dendritic cells
DHEA	Dehydroepiandrosterone
DHEAS	Dehydroepiandrosterone sulfate
DL	Dyslipidemia
DM	Diabetes mellitus
E4-ORF1	Early 4 open reading frame 1
ELISA	Enzyme-Linked Immunosorbent Assay
ER	Endoplasmic reticulum

i

FSH	Follicle-stimulating hormone
GK	Glycerol kinase
Glut4 & Glut1	Glucose transporters
GnRH	Gonadotropin releasing hormone
H_2O_2	Hydrogen peroxide
HDL	High-density lipoproteins
HDLc	HDL Cholesterol
HOMA	Homeostasis model assessment for insulin resistance
HPG	Hypothalamic-pituitary-gonadal
HR	Heart rate
HSKM	Human Skeletal Muscle
HT	Hypertension
HTN	Hypertension
ICAM-1	Intercellular adhesion molecule1
IL-6	Interleukin-6
ILC2s	Innate lymphoid cells
IRS	Insulin Receptor Substrate
LDL	Low density lipoprotein
LH	Luteinizing hormone
LVH	Left ventricular hyper-trophy
MCP-1	Macrophage receptor 1
MetS	Metabolic syndrome
MRI	Magnetic resonance imaging
NAFLD	Nonalcoholic fatty liver disease
NF-B	Nuclear factor-B
OWO	Overweight/obesity
PEGME	Polyethylene-glycol-methyl ether
PI3K	Phosphoinositide 3-kinase
PPARγ	Peroxisome proliferator activated receptor-γ

PVS	Polyvinyl sulfonic acid
SF	Skin fold thickness
SFA	Subcutaneous fat area
T2D	Type 2 diabetes
TNF-α	Tumor necrosis factor-α
VFA	Visceral fat area
VLDL	Very low-density lipoprotein
WC	Waist circumference
WHR	Waist to hip ratio
WHTR	Waist to height ratio

List of tables

Table	Title of table	Page
No.		ruge
1	The classification of adenovirus 36	10
2	Human adenovirus classifications	10
3	Average weight in kg at different age groups.	53
4	Average height in cm at different age groups	55
5	Average height growth velocity/year	56
6	Body Mass Index (BMI) Classification of Adults	75
7	Clinical characteristics of study sample classified according to BMI classes	76
8	Anthropometric characteristics of study sample classified according to BMI classes	77
9	Radiological Characteristics of study sample classified according to BMI classes	78
10	Laboratory Characteristics of study sample classified according to BMI classes	79
11	Frequency distribution for the high risk of tachycardia and hypertension among total sample and the 3 sample groups	80
12	Frequency distribution for the high risk of the anthropometric measurements among total sample and the 3 sample groups	81
13	Frequency distribution for the high risk of radiological measurements among total sample and the 3 sample groups	82
14	Frequency distribution for the high risk of laboratory investigations among total sample and the 3 sample groups	83
15	Clinical Characteristics of the girls with and without visceral obesity (Student's t test)	84
16	Anthropometric Characteristics of the girls with and without visceral obesity	85

17	Radiological Characteristics of the girls with and without visceral obesity	86
18	Laboratory Characteristics of the girls with and without visceral obesity	87
19	Frequency distribution for the high risk of tachycardia and hypertension among girls with and without visceral obesity	88
20	Frequency distribution for the high risk of anthropometric and radiological measurements among girls with and without visceral obesity	89
21	Frequency distribution for the high risk of laboratory findings among girls with and without visceral obesity	91
22	Frequency distribution of girls according to BMI and Tanner staging	92
23	Frequency distribution of girls with and without visceral obesity according to Tanner staging	93
24	Pearson's correlation between the visceral obesity at umbilicus, adenovirus 36 and cIMT at left carotid artery	94
25	Pearson's correlation between the visceral obesity at umbilicus, adenovirus 36 and cIMT at left carotid artery	97
26	Pearson's correlation between the visceral obesity at umbilicus, adenovirus 36 and cIMT at left carotid	98
27	Pearson's correlation between the visceral obesity at umbilicus, adenovirus 36 and cIMT at left carotid artery with the laboratory findings and tanner stages among total sample	100
28	Correlation between adenovirus 36 and cIMT at left carotid artery with the clinical variable among girls with visceral obesity group	1001
29	Correlation between adenovirus 36 and cIMT at left carotid artery with anthropometric measurements and the tanner stages Among girls with visceral obesity	102

	group	
30	Correlation between adenovirus 36 and cIMT at left carotid artery with radiological measurements among girls with visceral obesity group	102
31	Correlation between adenovirus 36 and cIMT at left carotid artery with laboratory findings among girls with visceral obesity group	103

List of figures

Fig.	title	Page
1	Genomic organization of Adv36	8
2	Structure of human adenovirus 36 (Adv36)	9
3	Adv36 mediates glucose uptake independently from insulin	17
4	Peroxisome proliferator-activated receptor pathway	21
5	Visceral fat area (VFA) Vs. subcutaneous fat area (SFA)	26
6	A schematic of stimuli that lead to increased ("browning") or decreased ("whitening") beige fat activity	29
7	Comparison between normal and abnormal C-IMT	33
8	A typical B-mode ultrasound image of the carotid artery	35
9	Atherosclerosis and brain stroke	37
10	Pathways regulating macrophage retention and emigration in plaques:	38
11	The development of atherosclerosis during the pediatric years	40
12	Feedback loops and targets organs in the hypothalamic-pituitary-ovarian axis	42
13	Standards for breast ratings	61
14	Body height measurement	63
15	Measuring tape position for abdominal (waist) circumference	64
16	Measuring hip circumference	65
17	Measuring the neck circumference	66
18	Frequency distribution of the adenovirus 36 among the 3 groups under study	86
19	Frequency distribution of the adenovirus	87

	regarding visceral obesity	
	Frequency distribution for the high risk of	
20	tachycardia and hypertension among girls	88
	with and without visceral obesity	
	Frequency distribution for the high risk of	
21	anthropometric measurements among girls	89
	with and without visceral obesity	
	Frequency distribution for the high risk of	
22	right and left cIMT measurements among	89
	girls with and without visceral obesity	
	Frequency distribution for the high risk of	
23	laboratory findings among girls with and	90
	without visceral obesity (insulin, HOMA,	
	glucose) Frequency distribution for the high risk of	
	laboratory findings among girls with and	
22	without visceral obesity (cholesterol, TG,	91
	HDL, LDL)	
	Frequency distribution of girls according to	
25	BMI and Tanner staging.	92
	Frequency distribution of girls with and	
26	without visceral obesity according to Tanner	93
	staging	
27	Pearson's correlation between the visceral	95
	obesity at umbilicus and weight.	
28	Pearson's correlation between the visceral	95
	obesity at umbilicus and BMI.	
29	Pearson's correlation between the visceral	96
	obesity at umbilicus and Waist circumference	
30	Pearson's correlation between the visceral	96
	obesity at umbilicus and Hip circumference	
31	Pearson's correlation between left cIMT and waist circumference	97
32	Pearson's correlation between the cIMTat left	98
J 2	1 Caigon 5 Coilcianon Delycen une chyllat ICL	70

	carotid artery and cIMTat right carotid artery	
33	Correlation between at left carotid artery with HDL among total sample	99
34	Pearson's correlation between the cIMT at left carotid artery and height	100
35	Correlation between cIMT at left carotid artery and HOMA –IR.	102

Carotid Intima-Media Thickness in visceral

obese Egyptian female adolescents with adenovirus 36 infection

Walaa Saad^a, Hanan A. El Gamal^b, Sahar A. El-Masry^a, Muhammad Al-Tohamy^a, Ayman Nada^b, Amany Ebrahim^c.

^a Biological Anthropology Dept., Medical Research Division, National Research Centre, Giza, Egypt (Affiliation ID 60014618)

^bMedical Studies for children Dept., Faculty of Postgraduate Childhood Studies, Ain Shams University ,Cairo, Egypt

^cPediatrics Dept., Diabetes & Endocrinology Unit, Cairo University, Cairo, Egypt

Abstract

Background: Increased carotid intima-media thickness (cIMT), a marker of early-onset atherosclerosis, has been observed in obese adolescents. Recently the viral infection increased interest in obesity-related studies, especially adenovirus 36.

Aim: To investigate the relationship between cIMT, visceral obesity and adenovirus 36 infection in female adolescents. **Study Design:** A cross-sectional study included 90 females aged 12-15 years. It was conducted at the "Medical Excellence Research Center (MERC)" of the "National Research Centre" (Approval No.15089), during the period between September 2016 and November 2017. Anthropometric assessment was done. Visceral obesity was measured by abdominal ultrasound. cIMT for both carotid arteries were measured by high-resolution echo-Doppler. Qualitative Human adenovirus 36 antibody was assessed using ELISA.

Results: Girls with visceral obesity had higher frequency of increased cIMT at left (96.2% versus75%) and right carotid artery (84.6% versus 73.4%), and adenovirus 36 sero-positive antibodies than among those without visceral obesity p<0.01. Visceral obesity; among total sample; had significant positive correlations with BMI, waist and hip circumference. While it had insignificant correlations with age, cIMT at both right and left carotid arteries and adenovirus 36.

Conclusions: The frequency of increased cIMT at left carotid artery was higher among girls with visceral obesity than among those without visceral obesity. Visceral obesity, cIMT at right & left carotid arteries, and Adenovirus-36 had insignificant correlations with each others.

Keywords: carotid intima-media thickness - Visceral obesity - adenovirus 36.