APPLICATION OF CLEANER PRODUCTION TECHNIQUES IN DAIRY INDUSTRIES

Submitted By

Soha Nabil Ahmed El-Mashad

B.Sc. of Engineering, Faculty of Engineering, Cairo University, 1994

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2011

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In

Environmental Sciences
Department of Environmental Engineering Sciences

Under The Supervision of:

1-Prof. Dr. Nahed Sobhy Mohamed

Prof. of Industrial Engineering Faculty of Engineering Ain Shams University

2-Prof. Dr. Mohamed Abd El-Razek El-Nawawy

Emeritus Prof. of Food Sciences Faculty of Agriculture Ain Shams University

3-Prof. Dr. Nabil Mahmoud Abd Elmoniem

Prof. of Chemical Engineering Faculty of Engineering Cairo University

APPROVAL SHEET

APPLICATION OF CLEANER PRODUCTION TECHNIQUES IN DAIRY INDUSTRIES

Submitted By

Soha Nabil Ahmed El-Mashad

B.Sc. of Engineering, Faculty of Engineering, Cairo University, 1994

Master in Environmental Sciences, Institute of Environmental Studies and

Research.

Ain Shams University, 2011

A thesis submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree
In

Environmental Sciences
Department of Environmental Engineering Sciences

This thesis Towards a Doctor of Philosophy Degree in Environmental Sciences Has been Approved by:

Name

Signature

1-Prof. Dr. Mohamed Ayman Ahmed Ashour

Prof. of Architecture Dean of Faculty of Engineering Ain Shams University

2-Prof. Dr. Nagat Abd Allah Mostafa

Emeritus Prof. of Chemical Engineering Faculty of Engineering Minia University

3-Prof. Dr. Mohamed Abd El-Razek El-Nawawy

Emeritus Prof. of Food Sciences Faculty of Agriculture Ain Shams University

APPLICATION OF CLEANER PRODUCTION TECHNIQUES IN DAIRY INDUSTRIES

Submitted By Soha Nabil Ahmed El-Mashad

B.Sc. of Engineering, Faculty of Engineering, Cairo University, 1994

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2011

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

ABSTRACT

The Pollution resulting from Dairy Industry sector threw its sheds mainly on water resources in case of direct disposal or public network in case of indirect disposal due to high organic loads elevating BOD and COD.

The study in the first part introduce cleaner production techniques dedicated to two Dairy Companies representing Large / Small scale production capacity and in the second part propose a mobile treatment unit for the whey with some modifications for the international treatment unit using HYSCS 7.2 software for modeling .

Cheese industry is the biggest sector in the Egyptian dairy industry. Thus, the main pollutant of Dairy Industry is the whey, that can could be transferred to different products such as powder products. These can be used as a supplementary nutrient or pharmaceutical products or food aiads; avoiding traditional methods of whey treatment and disposal and hence sustainable development could be achieved in Dairy Industry.

TABLE OF CONTENT

	Page
CHAPTER I: INTRODUCTION	1
Introduction	1
1.1 Background	11
1.1.1 What Is Cleaner Production (CP)?	11
1.1.2 Why Cleaner Production?	12
1.1.3 Where to Apply Cleaner Production?	13
1.1.4 Tools for Cleaner Production	14
1.2 Statement of Problem	18
1.3 Objective	21
1.4 Scope	22
CHAPTER II: LITRETURE REVIEW	23
2.1 Different Products in The Dairy Industry	23
2.1.1 Different Products in The Dairy Industry	24
2.1.2 Raw Materials	28
2.1.3 Milk Processing Steps.	28
2.1.4 Cleaning step	36
2.2 Environmental Impacts	37
2.3 Environmental Indicators	42
2.4 Environmental Guidelines For The Dairy	
Processing	51
2.5 Environmental Elements	52

2.6 Waste Components of Dairy Wastewater	58
2.6.1 Wastewater treatment and disposal [45, 46].	60
2.6.2 Components of a wastewater system [46,	
47]	61
2.6.2.1 Segregation	61
2.6.2.2 Equalization and pH control	62
2.6.2.3 Fat removal	62
2.6.2.4 Removal of organic load	62
2.6.2.5 Biological processes	63
2.6.2.6 Advanced treatment for reuse	63
2.6.2.7 Land irrigation	64
2.6.2.8 Emergency storage	64
2.6.3 Solid wastes [46, 47]	64
2.7 Cleaner Production Assessment In Dairy	
Processing	66
2.7.1 General	66
2.7.1.1 Water [2, 3, 14]	66
2.7.1.2 Effluent [2, 3]	69
2.7.1.3 Energy [2, 3, 14]	70
2.8 Whey Processing And Utilization [48]	72
2.9 Different Whey Processes	75
2.9.1 Casein fines recovery and fat separation	75
2.9.2 Cooling and pasteurization	75
2.9.3 Concentration of total solids [39, 48, 50]	76

2.	9.4 Lactose recovery	77
Chap	oter III: MATERIALS AND METHODS	78
3.1 N	Methodology of Study	78
3	.1.1 Theoretical Part	78
3	.1.2 Practical Part	78
3.2 7	The Selected Dairy Factories	78
3	2.1 Domty Dairy Company	79
3	.2.2 Eissa Dairy Company	94
3.3 S	Study Program For The Selected Dairy Factories	106
3	.3.1 Wastewater Analysis	106
3	.3.2 Solid Waste Analysis	108
3	.3.3 Air Emissions Analysis	108
3.4	Proposed Cleaner Production Alternatives And	
	Techniques	108
СНА	PTER IV: RESULTS	109
4.1	The International Whey Treatment Unit	109
4.2	The Proposed Whey Treatment Unit	110
4.3	Design Of Aspen Hysys Cases & Conversion	
	To Workbooks	112
	4.3.1 One Effect	116
	4.3.2 Two Effects	118
	4.3.3 Three Effects	120
	4.3.4 Four Effects	122
	4.3.5 Five Effects	124

4.4 Economical Compariso	on Of The Five Aspen
Hysys Cases	126
CHAPTER V: DISSCUSS	SION 128
5.1 Results Discussion	
5.2 Full Description Fe	or The Small Scale
Treatment Plant (Mobi	ile Unit) of Whey 128
Summary	
CHAPTER VI: CONCLUS	SIONS AND
RECOMM	IONDATIONS 136
6.1 Conclusions	
6.2 Recommendations	
REFERENCES	

TABLE OF FIGURES

Figure no.		Page
Figure 1	Cleaner production flow chart	1
Figure 2	The basic processes in a cheese-making plant	5
Figure 3	Flow diagram for processes occurring at a typical milk plant	8
Figurer 4.	Is a flow diagram outlining the basic steps in the production of whole milk, semi skimmed milk and skimmed milk, cream, butter and buttermilk	25
Figure 5	Flow diagram for a typical butter-making plant	30
Figure 6	Inputs and outputs from milk receipt and storage	31
Figure 7	Inputs and outputs for the separation and standardization of whole milk [33
Figure 8	Inputs and outputs for the pasteurization and homogenization of whole milk	34
Figure 9	Inputs and outputs for the deodorization of milk	36
Figure 10	Inputs and outputs for storage and packaging of milk products	43
Figure 11	Whey processing alternatives	74
Figure 12	White cheese (first technology)flow diagram at domty dairy company	83
Figure 13	White cheese (second technology)flow diagram at domty dairy company	84
Figure 14	Three effect evaporator with thermocompression for concentration of Whey	109

Figure no.		Page
	adapted from brochure of dmv-international	
Figure 15	Proposed whey treatment unit	110
Figure 16	Four effect evaporation process	113
Figure 17	Total cost for different number of effects	127
Figure 18	Final proposed whey treatment unit	130

TABLE OF TABLES

Table No.		Page
Table 1	Examples of cleaner production measures for the dairy processing	12
Table 2	Composition of sweet and acid whey, and ultrafiltration (UF) permeate	20
Table 3	The approximate composition of Gouda cheese whey	26
Table 4	Areas of water consumption at dairy processing plants	44
Table 5	Sources of milk losses to the effluent stream	47
Table 6	Specific energy consumption for various dairy products	49
Table 7	Energy consumption for a selection of milk plants	50
Table 8	Sources of waterborne waste	59
Table 9	Checklist of general housekeeping ideas	67
Table 10	Checklist of water saving ideas	69
Table 11	Checklist of ideas for reducing pollutant loads in effluent	70
Table 12	Checklist of energy saving ideas	71
Table 13	Approximate composition of whey, %	73
Table 14	Examples of utilization of whey and whey products	73