

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

BHIAN

BIOCHEMICAL STUDIES ON SERA FROM HEPATOCELLULAR CARCINOMA PATIENTS DURING TREATMENT WITH 5-FLUOROURACIL AND α-INTERFERON

Thesis submitted to the Faculty of Science - Alexandria University in partial fulfillment of the requirement of the degree of MASTER OF BIOCHEMISTRY

BY WAFAA ALSAYED ATEYA MOHAMMAD B.SC

SUPERVISORS

Prof. Dr. Olfat Mohei EL - Din?

Professor of Biochemistry

Faculty of Science

Alexandria University

Prof. Dr. Hashem Mohammad Morshidy

Professor of Internal Medicine
Faculty of Medicine
Alexandria University

Dr. Ahmad Raafat Bassiouny

Faculty of Science
Alexandria University

1995

Acknowledgment

First all thanks are due to Allah, the most gracious, the most merciful.

I am sincerely grateful and thankful to professor Olfat Mohei El - Din, professor of Biochemistry, Faculty of science, Alexandria University, for her kind and active supervision, valuable encouragement and continuous sincere guidance.

This work reported in this thesis was conducted under the supervision of professor Dr. Hashem Mohamed Morshidy professor of internal medicine, Faculty of Medicine, Alexandria university. I wish to express my sincere gratitude for his generosity, kind encouragement, active supervision and suggestions during the practical work.

It is a pleasure to acknowledge Dr. Ahmad Raafat Bassiouny, lecture of Biochemistry, Faculty of Science, Alexandria University, for his supervision and valuable suggestions throughout this study.

I wish to express my deepest thanks to Colonel Dr. Tarek Ahmad EL Halawani, Head of laboratory department, Naval Forces Hospitals, for his unlimited encouragement, generous help, valuable advice, helpful suggestion, critical revision of my thesis and for available laboratory facilities to make this work possible.

Special thanks to Major Dr. Mostafa Essmat for his valuable assistance that really helped me.

Many thanks, and deep gratitude to all the members of Laboratory department of the Naval force Hospital for their kind help during my work.

Last, but not least, I want to express to my gratitude to my family for their moral support.

CONTENTS

		Page No.
Chaptek1	INTRODUCTION	1
A. The Live	•	1
Anatomy		2
Physiology		3
Storage of vitamin.		
Removal of excretion of drugs		3
Bilirubin.		4
B. Tumors d	of the liver.	5
Secondary n	nalignant tumors	5
Primary liver tumor		5
C. Etiologic	al factors in hepatocellular carcinoma	6
Viruses		6
Chemicals		9
Alcohol.		10
Estrogen		- 11
Androgens		12
Cirrhosis of	the liver.	12
D. Main syr	mptoms and signa in hepatocellular carcinoma.	14
E. Some of	biochemical investigations of hepatocellular carcinoma	14
Bilirubin		14
Enzymes.		15
Alkaline pho	sphatase	16
Transaminas	se	17
Lactic dehya	Irogenase	20
Plasma proteins.		
F. Markers of primary liver cancer		

Alpha-feto-protein	25	
Des-gamma-carboxyprothrombin	27	
G. Treatment of hepatocellular carcinoma.		
# 5-fluorouracil	38	
# Alpha-interferon	42	
^ Cholesterol	. 47	
^ Triglycerides	49	
^ Urea Nitrogen	49	
^ Serum Creatinine		
^ Serum Uric acid.	50	
^ Creatine phosphokinase	50	
STATEMENT OF PURPOSE	53	
Chapter MATERIALS and METHODS	55	
A. Samples	. 55	
B. Chemicals, Biochemicals, and Supplies	56	
- Clinical Laboratory investigations		
1. Des-gamma-carboxyprothrombin		
2. Prothrombin time and activity		
3. Alpha-feto-protein		
4. Total bilirubin		
5. Alkaline phosphatase	66	
6. Serum glutamate oxaloacetic transaminase	68	
7. Serum glutamate pyruvate transaminase		
8. Lactate dehydrogenase		
9. Total serum proteins		
10. Serum Albumin		
11. Serum protein electrophoresis		
-Statistical analyses		
Chapter RESULTS	82	

.

- Clinical data, Pathological results and the effect of treatments on tumor	83
size.	
- Change of DCP in studied groups in response to intravenous injection of	101
vitamin K	
- Level of plasma DCP in hepatocellular carcinomic patients not receiving	104
vitamin K.	
- Comparison of the percent change of tumor sizes against DCP and AFP	123
- Effect of treatments on total serum bilirubin, Transaminase, ALP, LDH	128
and CPK Levels	
Levels of serum blood urea, serum Creatinine, serum Uric acid serum	148
triglycerides serum cholesterol, and total protein	
- Protein electrophoresis	154
Chapter DISCUSSION	162
SUMMARY AND CONCLUSION.	180
REFERENCES	185
APARIC SIMMARV	

.

.

List of abbreviations

HCC: Hepatocellular Carcinoma.

MLC : Metastases liver Carcinoma.

HBV : Hepatitis B virus.

HCV Hepatitis C virus.

ALP : Alkaline phosphatase.

H-ALP : Hepatocellular carcinoma - specific - alkaline phosphatase

S.G.P.T : Serum glutamic pyruvic transferase.

S.G.O.T : Serum glutamic oxaloacetic transferase.

LDH : Lactic dehydrogenase.

γ -GTP : Gamma glutamyl transpeptidase.

P.T : Prothrombin time.

AFP : Alpha-feto-protein.

DCP : Des-γ -carboxyprothrombin.

PIVKAII : Protein induced vitamin K antagonist II.

ELISA : Enzyme-linked immunosorbent assay.

RIA : Radio immuno assay.

SC : Staphylocoagulase.

CEA : Carcino embryonic antigen.

5-FU : 5-Fluorouracil.

FUR : Fluorouridin.

FUMP: fluorouridine-monophosphate.

FUDP : fluorouridine-diphosphate.

FUTP : fluorouridine-triphosphate.

DU : deoxyuridine.

IFN- α : Alpha-interferon.

IFN- β : Beta-interferon.

IFN- y : Gamma-interferon.

rIFN α -2b : recombinant interferon alpha-2b.

T.S. : Tumor size.

IU : International unit3:

IU/L International unit@/ litter.

IU/ml : International unit@/ ml.

I.V. : Intravenous injection.

S.C. Subcutaneous injection.

M.IU : Million international unit@

Vit K : Vitamin K.

B : Before.

D : During.

A : After.

% BD : Percent change before and during.

% BA : Percent change before and after.

GI : Group I.

G II : Group II.

G III : Group III.

TS: Thymidylate synthetase.

AGE : Agarose gel electrophoresis.

Chapter 1

INTRODUCTION

INTRODUCTION

A. The liver

Anatomy:- Is the largest unpaired organ in the body, weighing 1200 - 1500 g in adult and 80 g in the new born. It is pyramidal in shape with its apex to the left and base to the right. It occupies all of the right upper quadrant of the abdomen above the costal margin except for a small portion of the epigastrium that is not protected by the bony cage. It extends 5 to 10 cm to the left of midline(1). It has right and left lobes, the right lobe is larger; it contains the quadrate lobe on the anteromedial part of the posterior surface.

The left lobe is relatively larger in infancy and contributes to the protuberant abdomen at that age(2).

The liver has an arterial and venous blood supply and total blood flow is normally about 1500 ml/min. The arterial supply is by the hepatic artery, which enters the liver in the portal hepatis and is distributed throughout the liver via the portal tracts. In man, the hepatic artery supplies about 35% of the total liver blood flow and about 50% of its total oxygen supply. The portal vein drains the blood from alimentary tract, spleen, pancreas and gall bladder. It also enters the liver via the portal tracts and empties its blood into the sinusoid. Histologically, the liver is divided into lobules with regular sinusoid separated by plates of liver cells (hepatocyte); the sinusoid are capillaries which are lined by endothelial and phagocytic (Kupffer) cells(3). The hepatocytes are arranged in single-cell plates which lie between the sinusoid. Between the hepatocyte and the sinusoidal cells is the space of disse which contains fluid draining to the lymphatic in the portal tract(3).

Physiology:-

Liver cells carry out a wide variety of metabolic functions facilitated by the rich blood supply derived from the gut as well as systemic circulation, and by the intimate contact between hepatocyte and blood due to highly permeable sinusoidal lining. All hepatocytes are capable of performing the many functions of the liver (2) such as carbohydrate metabolism, protein metabolism, and lipid metabolism. In addition, miscellaneous metabolic functions of the liver are performed such as:

1-Storage of vitamin:

The liver has a particular propensity for storing vitamins. The single vitamin stored in greatest quantity in the liver is vitamin A, but large quantities of vitamin D and vitamin B_{12} are normally stored as well. Sufficient quantities of vitamin A can be stored to prevent deficiency for as long as 10 months. Sufficient vitamin D can be stored to prevent deficiency for as long as 3 to 4 months. And vitamin B_{12} can be stored for at least a year and may be several years(3).

2-Removal or excretion of drugs:

The very active chemical medium of the liver is well known for its ability to detoxify or excrete into the bile, many different drugs including sulfonamide, penicillin, ampicillin, and erythromycin. In a similar manner, several hormones are conjugated by the liver, including thyroxine and essentially all the steroid hormones such as estrogen, cortisol and aldosterone. Therefore liver damage can often lead to the excess accumulation of one or more of these hormones in the body fluids and therefore can cause manifestation of hormone excess(3).