BIOCHMICAL STUDIES ON JOJOBA PLANT USING TISSUE CULTURE TECHNIQUES

By

SHIMAA ABD ALLA SALEM

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2010

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Biochemistry)

Department of Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2018

Format reviewer

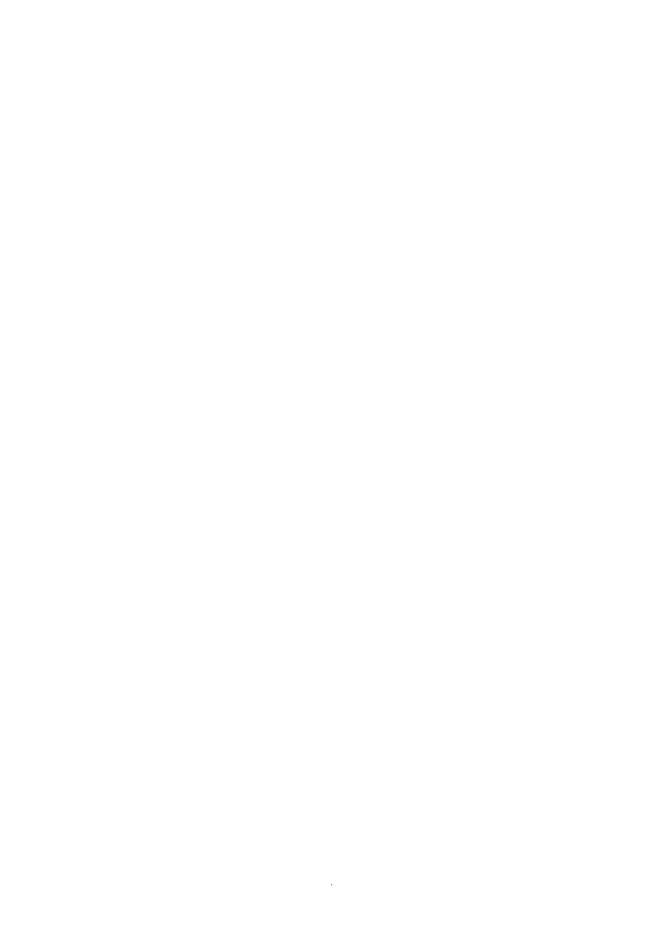
Vice Dean of graduate studies

APPROVAL SHEET

BIOCHMICAL STUDIES ON JOJOBA PLANT USING TISSUE CULTURE TECHNIQUES

M.Sc. Thesis
In
Agric. Sci. (Biochemistry)

By


SHIMAA ABD ALLA SALEM

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2010

APPROVAL COMMITTEE

Dr. ADEL ABUL-SUAD
Head Researcher, Horticulture Research Institute, Agricultural
Research Center, Egypt
Dr. MAHMOUD ABDEL HALEEM MAHMOUD
Professor of Biochemistry, Fac. Agric., Cairo University
Dr. OSAMA KONSOWA AHMED
Professor of Biochemistry, Fac. Agric., Cairo University
Dr. SHERIF HELMY AHMED
Professor of Biochemistry, Fac. Agric., Cairo University

Date: 18 / 7 /2018

SUPERVISION SHEET

BIOCHMICAL STUDIES ON JOJOBA PLANT USING TISSUE CULTURE TECHNIQUES

M.Sc. Thesis:
In
Agric. Sci. (Biochemistry)

 $\mathbf{B}\mathbf{v}$

SHIMAA ABD ALLA SALEM

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2010

SUPERVISION COMMITTEE

Dr. SHERIF HELMY AHMED

Professor of Biochemistry, Fac. Agric., Cairo University

Dr.OSAMA KONSOWA AHMED

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. FAISAL MOHAMED SADAWY

Head Research of Ornamental Department, Horticulture Research Institute, Agriculture Research Centre

DEDICATION

This work is dedicated to my kind mother, father, my sweety sister **Hagar**, my lovely brothers (**Mohammed, Khaled**) and **Ali**" Allah's mercy upon him.

I also dedicate it to my best friend **Naglaa Ezzat** for sincere help.

ACKNOWLEDGEMENT

I wish to express my thanks and pay my respect to Dr. SHERIFHELMY AHMED, Professor of Biochemistry, Faculty of Agriculture, Cairo University, for his supervision, criticism and all his efforts and his huge contribution to the success of this work.

I am grateful to **Dr. OSAMA KONSOWA AHMED**, Professor of Biochemistry, Faculty of Agriculture, Cairo University, for his supervision and guidance.

All my regards, thanks and respect to Dr. FAISEL MOHAMED SADAWI, Head Research of Ornamental Department, ARC., Giza, for his supervision and sincere advice. He was a father during the course of my study. He was my guiding light.

I would like to express my deep gratitude to all respectful members in the Department of Horticulture Research Institute, Agriculture Research Centre., I'm specially grateful to Dr. Sherif Saied for his continous help and support

My deep gratitude to everybody offered me even a little faithful favor in this work to attain a good form.

Name of Candidate: Shimaa Abd Alla Salem Degree: M.Sc.

Title of Thesis: Biochmical Studies on Jojoba Plant by Using Tissue Culture

Technique

Supervisors: Dr. Sherif Helmy Ahmed

Dr. Osama Konsowa Ahmed Dr. Faisal Mohamed Sadawy

Department: Agricultural Biochemistry

Branch: Biochemistry

Approval: 18 /7/2018

ABSTRACT

This work was carried out in the tissue culture laboratory of Zohriya Garden, Department of Ornamental Plant Research, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt during the period from 2013 to 2016. Simmondsin production and its effect on hepatic cancer and breast carcinoma cells was investigated through jojoba tissue culture. Lateral buds were excised from jojoba female plants grown in Zohriya Garden. As clorox was found to be ineffective in a preliminary trial, an experiment was carried out to investigate the effect of mercuric chloride HgCl₂ (MC). Three MC concentrations, 0.1, 0.2 and 0.3 g/l were applied. Buds were subjected to each concentration for three different exposure times, i.e. 5, 7 and 9 min. Survived explants that responded positively were used in another trial where they were inoculated on MS medium at different strengths, I.e. quarter, half, 3 quarters and full strength treatments. The best explant on basel media was determined and the physiological effect on various cell line hep, Breast and antimicrobial effect on Candida albicans, Bacillis subtilis, Escherichia Coli were studied. Two growth regulators kinetin and 6-Benzylamino purine (Kin and BAP) at 0.5, 1.0 and 1.5 mg/l were used to proliferate "in vitro shoots" from teh established explants on the medium cotained 5, 10 and 15 mg/lmalt extraction. Callus cultures were induced using pieces of 1cm² in vitro leaves of jojoba clone and cultured on MS basal medium supplemented with 0.5, 1.0 and 1.5 mg/l2,4-Dichlorophenoxyacetic acid, Naphthalin acitic acid individually and with combination. The best growth medium composition was MS salts at full strength in all experiments. Furthermore, multiplication of in vitro jojoba shoots number, shootlets length and leaves number could be highly achieved (7.67 shootlets/explants, 4.67 cm and 9.4 leaves) by 1.5 mg/l BAP combined with 15g/l malt extract. 2,4D at 1.5 with 2ip 0.5 mg/lrespectively induced callogenesis (98.67 %) with fresh weight 4.4 g while NAA at 1.0 mg/lplus 2ip 1.5 mg/l respectively enhanced callogens is production the forming callus from leaves expsosed to various elicitor materials (riboflavine, glutamine and AgNo₃). Also, the effect of MeOH extract and Oil on cancer cell line were recorded 40.78% and 81.94% for 500 mg/lfor Hepatocellular carcinoma cancer cell line. Whileasey at this value (500 mg/l) was scored (67.21) and (90.65) for Breast carcinoma cancer cell line.

Key words: Jojoba, tissue culture, callus, *Simmondsia chinensis*.

CONTENTS

		Page
IN	TRODUCTION	1
RI	EVIEW OF LITERATURE	5
1.	Shootlets production	5
	a. Disinfecting treatment	5
	b. Establishment treatment	7
2.	Multiplication stage	10
	Callus formation stage	13
	a. Callus induction	14
	b. Callus initiation	15
	c. Callus profilation	16
4.		16
	a. Phytochemical constitutes	16
	b. Antioxidantes profile	17
	c. Oil contents	17
5.	Pharmacogoncy studies	18
	a. Antibacterial effect	19
	b. Antifungal effect	20
	c. Prevent cancer cell activity	21
M	IATERIALS AND METHODS	22
1.	. In vitro shootlets proliferation	22
	a. Plant materials	22
	b. Explant disinfecting	22
	c. Media strength	23
	d. Plant growth regulators content	23
	e. Callus induction	23
2	2. Elicitors effect	23
	3. Phytochemical analysis	24
	a. total soluble indoles	24
	b. antioxidants profile	24
	c. Phytochemical fractionation by HPLC	25
4	. Flavonoids extraction	26
5	5. Antioxidant study Free radical scavenging activity	
	(DPPH -RAS method)	27
6.	Antimicrobial activity	27
7.	Evaluation of cytotoxic effects of certain chemical	
	compound	28

8. Cell line propagation	29
9. Cytotoxicity evaluation using viability assay	29
10. Data and parameters tested	30
RESULTS AND DISCUSSION	32
1. In vitro shootlets proliferation	32
a. Disinfecting explants	32
b. Effect of media strength	36
c. Effect of multiplication treatments	38
2. Callus production	44
a. Callus initiation	44
b. Callus increments (fresh weight)	45
3. Effect of abiotic stress	47
a. Total phenols	47
b. Total indoles	47
c. Total flavonoids	48
d. Total antioxidants	48
4. Effect of a biotic stress on phytochemical	
fractionation was studied by HPLC	51
5. Effect of active ingredients	53
a. Anti-microbial test	53
b. Cancer cell activity	55
Morphological observation	57
SUMMARY	61
REFERENCES	66
ADADIC CUMMADV	