EFFICIENCY OF SOME BIO PESTICIDES IN CONTROL OF PLANT DISEASES COMPARING WITH CHEMICAL PESTICIDES

 $\mathbf{B}\mathbf{y}$

ZIENAB HASSAN WAHBA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2005

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agriculture
Cairo University
EGYPT
2018

Format reviewer

Vice Dean of graduate studies

APPROVAL SHEET

EFFICIENCY OF SOME BIO PESTICIDES IN CONTROL OF PLANT DISEASES COMPARING WITH CHEMICAL PESTICIDES

M.Sc. Thesis
In
Agric. Sci. (Agric. Microbiology)

 $\mathbf{B}\mathbf{y}$

ZIENEB HASSAN WAHBA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2005

APPROVAL COMMITTEE

Dr. EL-SHAHAT MOHAMMED RAMADAN Professor of Agricultural Microbiology, Fac. Agric., Ain Shams University
Dr. GALAL MAHMOUD EL-SAYED KHALAFALLAHProfessor of Agricultural Microbiology, FAC. Agric., Cairo University
Dr. OLAFT SAYED MAHMOUD BARAKAT Professor of Agricultural Microbiology, Fac. Agric., Cairo University
Dr. REFAE IBRAHEM REFAE Professor of Agricultural Microbiology, Fac. Agric., Cairo University

Date: 20 / 5 / 2018

SUPER VISION SHEET

EFFICIENCY OF SOME BIO PESTICIDES IN CONTROL OF PLANT DISEASES COMPARING WITH CHEMICAL PESTICIDES

M.Sc. Thesis

In

Agric. Sci. (Agric. Microbiology)

By

ZIENAB HASSAN WAHBA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2005

SUPERVISION COMMITTEE

Dr. REFAE IBRAHEM REFAE

Professor of Agricultural Microbiology, Fac. Agric., Cairo University

Dr. OLAFT SAYED MAHMOUD BARAKAT

Professor of Agricultural Microbiology, Fac. Agric., Cairo University

Dr. SAMI SHAFIK RAMSES

Chief Researcher Emierties, CAPL, Agric. Res. Center

CONTENTS

INT	RODUCTION
REV	VIEW OF LITERRATURE
	TERIALS AND METHODS
	1. Tomato samples
	2. Isolation and identification of the pathogenic
	fungi
	3. Pathogenicity test.
	a. Pathogenicity test of soil borne fungi
	b. Pathogenecity test of foliar disease fungi
	4. Isolation and identification of the bio-control
	agents
	5. Antagonistic effect of isolated bio-control agents
	against pathogenic fungi
	6. The antifungal activity of the chemical fungicides
	7. The antifungal activity of the Bio-pesticides
	8. Protein profile
	a. Preparation of protein samples
	b. Quantitative determination (Total protein
deter	mination)
actor	c. Qualitative determination (Protein electrophoresis
	by SDS-PAGE)
	9. Greenhouse studies in pot experiment
	10. Statistical Analysis
	11. Composition of the used media
RES	SULTS
	1. Isolation, purification and identification of the fungal
	isolates
	2. Pathogenicity Test
	a. Pathogenicity of soil-borne fungi
	b. Pathogenicity of tomato foiliage fungi <i>A. alternata</i>
	3. Antagonisistic effect of the two isolates from healthy
	tomato plants
	tomato piants

a. Antagonisistic effect on soil-borne pathogens	
Fusarium spp	46
b. Antagonisistic effect On the foliar pathogen	
A. alternata	49
4. Evaluation of some commercial fungicides on	
growth of fungal pathogens	51
a. Effect of Biocides on growth of fungal pathogens	51
1. Biocide Bio-zeid	51
2. Biocide Bio-Ark	55
3. Biocide Plant guard	58
b. Effect of chemical fungicide on growth of fungal	
pathogens	61
1. Effect of Uniform 390 SE on the growth of	
soil-borne pathogens	63
2. Effect of Antracol WP 70% on the foliar	
pathogen A. alternata	65
5. Protein profile	65
a. Total protein	65
b. SDS-PAGE and fungal protein analysis	67
6. Effect of different fungicides on tomato Fusarium	
diseases under green house conditions	77
DISCUSSION	86
SUMMARY	92
REFRENCES	96
ARARIC SUMMARY	

List of Tables

No.	Title	Page
Table 1	Tomato fungal diseases with Characteristic symptoms and infected parts of plant	_
	and infected parts of plant	5
Table 2	Chemical fungicides used for comparision	26
Table 3	Different concentrations of the used chemical pesticides	26
Table 4	Bio-pesticides used for evaluation	27
Table 5	Occurrence of different fungi isolated from infected and	
	healthy plants in two locations in Egypt	39
Table 6	Identification of the isolated fungi	41
Table 7	Effect of isolated pathogens on tomato plant death	43
Table 8	Antagonistic effect of <i>C. globosum</i> (at zero time, before 3 days of the pathogen inoculation) and <i>T. harzianum</i>	47
Table 9	Effect of different concentrations of the Bio-zeid on the growth of fungal pathogens	52
Table 10	Effect of different concentrations of the Bio-Ark on the	
	growth of fungal pathogens	55
Table 11	Effect of different concentrations of the biopesticide	
	Plant guard on the growth of fungal pathogens	58
Table 12	Effect of different concentrations of the chemical	
	fungicide Uniform 390 SE on growth of the soil-borne	
	pathogens	61
Table 13	Effect of different concentrations of the chemical	
	fungicide Antracol WP 70% on growth of the soil-borne	
	pathogens	64
Table 14	Quantitative determination of total protein	66
Table 15	Molecular weights (KDa) of protein peptides detected	
	by SDS-PAGE in protein profiles of treatments	
	compared to untreated FORL (control)	68
Table 16	Molecular weights (KDa) of protein peptides detected	
	by SDS-PAGE in protein profiles of treatments	
	compared to untreated FOL	70
Table 17	Molecular weights (KDa) of protein peptides detected	
	by SDS-PAGE in protein profiles of treatments	
	compared to untreated <i>F. semitectum</i>	72

Table 18	Molecular weights (KDa) of protein peptides detected	
	by SDS-PAGE in protein profiles of treatments	
	compared to untreated F. solani (control)	74
Table 19	Molecular weights (KDa) of protein peptides detected	
	by SDS-PAGE in protein profiles of treatments	
	compared to untreated A. alternata	76
Table 20	Effect of various treatments on Death %, fresh and dry	
	weight (g), length (cm) of r oots and shoot and the	
	number of branches of tomato infected by FOL	80
Table 21	Effect of various treatments on Death %, fresh and dry	
	weight (g), length (cm) of roots and shoot and the	
	number of branches of tomato infected by FORL	81
Table 22	Effect of various treatments on Death %, fresh and dry	
	weight (g), length (cm) of roots and shoot and the	
	number of branches of tomato infected by F. solani	83
Table 23	Effect of various treatments on Death %, fresh and dry	
	weight (g), length (cm) of roots and shoot and the	
	number of branches of tomato infected by F. semitectum	85

List of Figures

No.	Title	Page
Figure 1	Tomato whole plant	4
Figure 2	Plant death after one week of tomato seedlings	
	planting In soil infested by FORL	43
Figure 3	Plant death after one week of tomato seedlings	
	planting In soil infested by FOL	44
Figure 4	Plant death after one week of tomato seedlings	
	planting In soil infested by F. semitectum	44
Figure 5	Plant death after one week of tomato seedlings	
	planting In soil infested by F. solani	45
Figure 6	Symptoms appeared on tomato leaves infected by the	
	foiliage fungi A. alternata under laboratory	
	conditions	45
Figure 7	Antagonistic effect of <i>C. globosum</i> on <i>Fusarium</i> spp.	
	at zero time of the pathogen inoculation (a) FOL (b)	
	F. semitectum (c) F. solani and (d) FORL	48
Figure 8	Antagonistic effect of <i>C. globosum</i> on <i>Fusarium</i> spp.	
	3 days before the pathogen inoculation (a) <i>F</i> .	
	semitectum (b) F. solani (c) FOL and (d) FORL	48
Figure 9	Antagonistic effect of <i>T. harzianum</i> on <i>Fusarium</i>	
	spp	49
Figure 10	Growth inhibition percentage resulted from the effect	
	of C. globosum (at zero time and before 3 days of the	
	pathogen inoculation) and <i>T. harzianum</i> on	
	A.alternata	50
Figure 11	Antagonistic effect of <i>C. globosum</i> (a) at zero time	
	and (b) before 3 days of the pathogen inoculation) (c)	7 0
F' 10	T. harzianum on A. alternata	50
Figure 12	Ldp lines of Bio-zeid against five pathogenic	~ 0
F' 10	fungi	53
Figure 13	Effect of the biocide Bio-zid on the growth of	~ 4
-	pathogenic fungi	54
Figure 14	Ldp lines of Bio-Ark against five pathogenic fungi	56
Figure 15	Effect of the biocide Bio-ark on the growth of	
	pathogenic fungi	57

Figure 16	Ldp lines of Plant guard against five pathogenic	
	fungi	59
Figure 17	Effect of the biocide plant guard on the growth of pathogenic fungi	60
Figure 18	Ldp lines of Uniform 390 SE fungicide against the	
	four soil-borne pathogenic fungi	62
Figure 19	Effect of the chemical fungicide uniform 390 on	
	growth of pathogenic fungi	63
Figure 20	Ldp line of Antracol WP 70% fungicide against A.	
	alternata	64
Figure 21	Effect of the chemical fungicide Antraol 70% on the	
	growth of A. alternata	65
Figure 22	SDS PAGE demonstrating the relationships between	
	three treatments bio ark, uniform 390 SE and T.	
	harzianum on the tested pathogens	77
Figure 23	Reduction% of disease	79

DEDICATION

This work is dedicated to the present absent soul, **Abdel-Rahman Hassan Wahba** "**BODA**" Allah's mercy on him, my sweetheart brother and my soul mate.

ACKNOWLEDGEMENT

Firstly and foremost, I'm indebted to ALLAH the greatest; forever.

I wish to express my sincere thanks, deepest gratitude and appreciation to Dr. Refae Ibrahim Refae; Professor of Agric. Microbiology, Faculty of Agriculture, Cairo University; for supervision, sincre cooperation and guidance throughout the course of study.

I'm greatly honored to express my gratitude and grace for continuous assistance, kind advices and unvaluable efforts to Dr. Olfat sayed Barakat; Professor of Agric. Microbiology, Faculty of Agriculture, Cairo University

I wish to introduce full thanks to Dr. Sami Shafik Ramses for his supervision, kind cooperation, guidance, kind advice, all facilities and help for work.

I would like to express my deep gratitude to all respectful members in the Department of Bactericides, fungicides and Nematicides, I'm specially grateful to Dr. Hanaa Abd El-Baqi Eid for her kind and continous help.

I deeply thank all my friends and colleagues who helped me during this research for sincere help and support speacially Yomna Nabil.

Lastly, but not the last, I wish to express my greatest thanks to my lovely family speacially my kind mother for their continuous patience, encouragement, support and for the unforgettable hard times we had shared with.

Name of candidate: Zienab Hassan Wahba Sayed Degree: M.Sc.

Title of Thesis: EFFICIENCY OF SOME BIO PESTICIDES IN CONTROL OF PLANT

DISEASES COMPARING WITH CHEMICAL PESTICIDES.

Supervisors: Dr. REFAE IBRAHEM REFAE

Dr.OLAFT SAYED MAHMOUD BARAKAT

Dr.SAMI SHAFiK RAMSES

Department: Microbiology Approval: 20 / 5 /2018

ABSTRACT

A variety of fungal diseases (rot and wilt) affects tomato plants which causes economic damages. Therefore the present study aimed to identify the pathogenic fungi, evaluate biological and chemical methods controlling different tomato plant diseases. As well as obtaining new isolates that can be used in biocontrol. Therefore pathogenic fungi were isolated from diseased tomato plants and identified as Fusarium oxysporum, Fusarium solani, Fusarium semitectum (soil-borne pathogens) and Alternaria alternata (as a foliage pathogen). Also, Chaetomium globosum and Trichoderma harzianum were isolated from healthy tomato plants at the rhizospheric area. All plant sampls came from soil in Alexandria and Giza Governorates. These isolates were evaluated as potential bio-agents in control of the soil-borne fungi. The antagonistic effect of T. harzianum and C. globosum as controlling bioagents was tested under laboratory conditions on each pathogen, T. harzianum showed remarkable superiority over the other one. T. harzianum was the most effective bio-agent against Fusarium spp. reducing their growth. The maximum growth reduction of 100% with F. semitectum. The three tested biocides; Bio Zeid, Bio Ark and Plant guard were evaluated in vitro in comparison with chemical fungicide (Uniform 390 SE and Antracol WP 70%) and T. harzianum on growth of pathogenic isolates. The obtained results indicated the superiority of biocides and T. harzianum over the chemical fungicides. Quantitative determination of protein content to tested pathogens revealed that bio-ark was the most effective one either by decreasing or increasing fungal protein content. A greenhouse experiment was established for the application of bio-Ark as a model of bacterial bio-pesticide and the fungal isolate T. harzianum, comparing them with the chemical pesticide uniform 390 SE. T. harzianum recorded the highest disease reduction percentage ranged between 81 - 100% followed by the biocide bio-Ark fom zero - 100% and then uniform 390 SE from 6 - 75%.

Key words: Tomato, Fusarium spp., Alternaria alternata, biocides, fungicides.

INTRODUCTION

Tomato (Solanum lycopersicum L.) is arguably the world's most important vegetable crop. In the vegetable world market, it is ranked not only in the second place, next to potato, in world total production but also in the first position in international commodity prices (FAOSTAT, 2012). According to FAOSTAT (2017), Tomato is grown worldwide for local use or as an export crop. In 2014, the global area cultivated with tomato was 5 million hectares with a production of 171 million tonnes. Egypt is among the top five worldwide producers of tomato with about 8.6 millions ton (FAOSTAT, 2012). Tomato, a side from being tasty, it is very healthy because of its high nutritive value as it provides important nutrients such as vitamin C, betacarotene. lycopene, and flavonoids. Furthermore, antioxidant substances available in tomato may actually represent a modern-day "fountain of youth". Recent evidences suggested that lycopene has a strong anti-oxidative activities and anti-cancer functions (Wu et al. 2011; Park et al. 2014). It is noteworthy that tomato is not only sold fresh, but also processed and canned as soups, sauces, juices, ketchup and other products. Therefore, the production and consumption of this nutritious, health-promoting vegetable is constantly increasing. However, this crop is attacked by many pathogens a considerable reduction in yield quantity and quality (**De Curtis** et al., 2010). Among these diseases was two symptomologically distinct forms of the pathogen can cause either a vascular wilt Fusarium oxysporum f. sp. lycopersici (Snyder and Hansen, 1940) or a crown and root rot (*F.oxysporum f. sp. radicis-lycopersici* (**Benhamou** *et al.*, **1997**). The Crown root rot disease is caused by *F. oxysporum* which reduce yield to 50%; this fungus causes severe root rot and finally plant death (**De Araujo** *et al.*, **2009**; **Nihorimbere** *et al.*, **2010**). The Interaction between *F. oxysporum* and *F. solani* causes a root-rot disease complex that severely damages this important crop (**Klotz**, **1973**).

Diseases are known to limit worldwide production of tomato Controlling such diseases mainly depend on fungicides treatments (Rauf, 2000). However, fungicidal applications cause hazards to human health and increase environmental pollution. Biological control had attracted the interest because of increasing regulation and restriction of chemical pesticides or unsuccessful control attempts by other means. Biological control for pathogens by antagonistic microorganisms is potential especially for soil-borne diseases because these pathogens are difficult to be controlled with specific fungicides (Moussa et al., 2007). Potential agents for bio-control activity are rhizosphere competent fungi and bacteria, which in addition to their antagonistic activity are capable of inducing growth responses by either controlling minor pathogens or by producing growth stimulating factors (Akrami et al., 2011). It has been suggested that microorganisms isolated from the root or rhizosp here of a specific crop may be better adapted to that crop and may provide better control of diseases than organisms originally isolated from other plant species (Cook, 1993). Breeding of *Trichoderma* is directed to achieve effective mycoparasitic

strains for bio-control against plant fungal pathogens under a wide range of adverse environmental conditions (Manczinger et al., 2002), Chaetomium globosum has been reported effective in reducing damage caused by seed rot and damping off of several seed- and soil-borne plant pathogens (Aggarwal et al., 2004).

Our study aimed to 1) Isolate pathogenic fungi that cause severe loses in tomato plants in Egypt. 2) Limit the excessive misuse of the chemical pesticides by using alternative methods. 2) Evaluate biocontrol methods by either bioagents or bio-pesticides to control and limit the negative effect on the yield quality and quantity caused by these diseases.