INFLUENCE OF SOME HONEY BEE PRODUCTS AND GROWTH PROMOTERS ON IMMUNOLOGICAL AND PRODUCTIVE PERFORMANCE IN BROILER CHICKENS

By

AHMED HAMDY RABIE MOHAMED ALI

B.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2000 M.Sc. Agric. Sci. (Poultry Production), Fac. Agric., Cairo Univ., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Poultry Production)

Department of Animal Production
Faculty of Agriculture
Cairo University
EGYPT

2018

APPROVAL SHEET

INFLUENCE OF SOME HONEY BEE PRODUCTS AND GROWTH PROMOTERS ON IMMUNOLOGICAL AND PRODUCTIVE PERFORMANCE IN BROILER CHICKENS

Ph.D. Thesis In Agric. Sci. (Poultry Production)

By

AHMED HAMDY RABIE MOHAMED ALI

B.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2000 M.Sc. Agric. Sci. (Poultry Production), Fac. Agric., Cairo Univ., 2011

Approval Committee

Dr. AZZA ABD-ALLAH EL-SEBAEI MOHAMEDProfessor of Poultry Physiology, Fac. Agric., Alexandria University	
Dr. FATEN ABD EL-FATTAH AHMED IBRAHIM Professor of Poultry Husbandry, Fac. Agric., Cairo University	
Dr. FARID KAMAL RAMZI STINOProfessor of Poultry Breeding, Fac. Agric., Cairo University	
Dr. AHMED MOHAMED EL-KAIATY MOHAMED Professor of Poultry Physiology, Fac. Agric., Cairo University	

Date: 8 / 8 / 2018

SUPERVISION SHEET

INFLUENCE OF SOME HONEY BEE PRODUCTS AND GROWTH PROMOTERS ON IMMUNOLOGICAL AND PRODUCTIVE PERFORMANCE IN BROILER CHICKENS

Ph.D. Thesis
In
Agric. Sci. (Poultry Production)

By

AHMED HAMDY RABIE MOHAMED ALI

B.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2000 M.Sc. Agric. Sci. (Poultry Production), Fac. Agric., Cairo Univ., 2011

SUPERVISION COMMITTEE

Dr. AHMED MOHAMED EL-KAIATY MOHAMED

Professor of Poultry Physiology, Fac. Agric., Cairo University

Dr. FARID KAMAL RAMZI STINO

Professor of Poultry Breeding, Fac. Agric., Cairo University

Dr. MAGDY SAYED HASSAN HASSAN

Head Research of Poultry Husbandry, Animal Prod. Res. Inst., A.R.C.

Name of Candidate: Ahmed Hamdy Rabie Mohamed Degree: Ph.D.

Title of Thesis: Influence of Some Honey Bee Products and Growth

Promoters on Immunological and Productive Performance

in Broiler Chickens

Supervisors: Dr. Ahmed Mohamed El-Kaiaty Mohamed

Dr. Farid Kamal Ramzi Stino Dr. Magdy Sayed Hassan Hassan

Department: Animal Production **Branch:** Poultry Science

Approval 8/8/2018

ABSTRACT

The present study was conducted to evaluate the effects of bee products (propolis, bee-pollen and bee-venom) and a growth promoter on immunological and productive performance in broiler chickens. A total of 408 straight-run one week old, Cobb 500 broilers were randomly divided into 8 experimental treatments (3 replicate, 17 chicks each). The first treatment was fed basal diet without any additives and served as a control. The second treatment was fed the basal diet supplemented with the growth promoter Biox-Y[®] 500 mg per kg of diet. The third and the fourth treatments were fed basal diet supplemented with propolis (200 or 400 mg/kg diet). The fifth and the sixth treatments were fed basal diet supplemented with bee-pollen (1000 or 2000 mg/kg diet). The seventh and the eighth treatments were fed the basal diet and their water was supplemented with bee-venom (1 or 2 mg/L water). Weekly body weight, body weight gain, feed intake and feed conversion ratio obtained. Blood samples were obtained at the end of the experiment (7 weeks of age) to determine blood parameters. The obtained results showed that the broiler chicks fed diet with propolis (400 mg/kg diet) had significantly higher body weight and total body weight gain compared to the control treatment. Also, all treated treatments had significantly lower average daily feed intake during the whole experimental interval and significantly improved total feed conversion ratio compared to the control and Biox-Y[®] treatments. The chicks fed diets containing propolis (200 or 400 mg/kg diet) or bee-venom (2 mg/L water) or bee-pollen (2000 mg/kg diet) showed significantly lower plasma cholesterol and LDL-cholesterol concentration compared to the control treatment. However, propolis (200 or 400 mg/kg diet) treatments and bee-pollen (2000 mg/kg diet) treatments had significantly higher plasma HDL cholesterol concentration than the control treatment. The chicks fed diet with propolis (400 mg/kg diet) showed significantly higher plasma T3, T4 concentration and T3/T4 ratio compared to the control treatment. The chicks fed diet with propolis (400 mg/kg diet) significantly higher breast muscles protein and moisture concentration had compared to the control and Biox-Y[®] treatments. At 35 days of age, the chicks fed diets containing propolis (400 mg/kg diet) or bee-venom (2 mg/L water) had significantly higher humoral immune response against sheep red blood cells compared to the control treatment. The chicks fed diets containing propolis (400 mg/kg diet) for 6 weeks had significantly higher cell mediated immune response compared to the control and Biox-Y® treatments. It was concluded to recommend adding propolis (400 mg/kg diet) or bee-pollen (2000 mg/kg diet) to broilers diets. This is an eco-friendly alternative to replace the use of antibiotics in broilers feed. This would result in improve productive, physiological performance and immune response for broiler chickens.

Key words: Broiler chicks, propolis, bee-pollen, bee-venom, productive

performance, blood metabolites, immune response.

DEDICATION

I dedicate this work to whom my heart felt thanks; to my parents, my wife, my brothers and my sister for giving me their wholehearted support and great patience.

ACKNOWLEDGEMENT

Thanks to ALLAH.

I wish to express my sincere appreciation and my deep gratitude to **Prof. Dr. Ahmed Mohamed El-Kaiaty Mohamed** Professor of Poultry Physiology, Animal Production Department, Faculty of Agriculture, Cairo University, for his counsel, close supervision, encouragement, help and interest as the author's advisor during the research study, and great help in reviewing and the preparation of the thesis.

I wish also to express my deepest appreciation and deep gratitude to **Prof. Dr. Farid Kamal Ramzi Stino**, Professor of Poultry Breeding, Animal Production Department, Faculty of Agriculture, Cairo University, for his kind supervision, his suggestion in the statistical analysis of the data, great help in reviewing this manuscript and his fruitful advice during this study.

My deepest thanks to **Prof. Dr. Magdy Sayed Hassan Hassan**, Head Research of Poultry Husbandry, Animal Production Research Institute (APRI), Agricultural Research Center (ARC) for his supervision and suggesting the design of this research work.

I wish also to express my deepest thanks to **Dr. Mohamed Abdel-Rahman El-Menawey,** who helped me during the statistical analysis.

My gratitude, appreciation and geuine acknowledgment and thanks to **Prof. Dr. Ehab Ahmed Abdallah** for his encouragement and valuble advice and his continuous help.

LIST OF ABBREVIATIONS

ADFI Average Daily Feed Intake

AI Avian Influenza

ALT/GPT Alanine aminotransaminase AST/GOT Aspartate aminotransaminase

BP Bee-Pollen
BW Body Weight
BWG Body Weight Gain

CD4 Cluster of differentiation 4

cm Centimeter CP Crude protein

DP Dressing Percentage
EE Economical efficiency
EEP Ethanol Extract of Propolis

etc Et cetera

FCR Feed Conversion Ratio

FE Feed Efficiency
FI Feed Intake

g /dl gram per deciliter
GIT Gastric Intestinal Tract

Hb Hemoglobin
HBV Hone Bee Venom
Hct% Hematocrit percentage

HDL-cholesterol High-density lipoproteins cholesterol Heamagglutinition inhibition titers

IBD Infectious Bursal Disease

IgGImmunoglobulin GIgMImmunoglobulin MKcalkilogram calorie

LDL-cholesterol Low-density lipoproteins cholesterol

MCD Mast cell degranulating ME Metabolizable Energy mg/dl milligrams per deciliter

mg /L milligrams per one litre water

ml milliliter

ABBREVIATIONS (continued)

MOS Mannan-oligosaccharides NDV Newcastle Disease Virus

NK cell Natural killer cell

nm nanometer

NRC National Research Council
PBS Phosphate buffered saline
PCV Realized cell volume

PCV Packed cell volume PHA Phytohemagglutinin

PUFA Polyunsaturated fatty acid

RBC's Red Blood Cells

SAS Statistical Analysis System SOD Superoxide Dismutase SRBC's Sheep Red Blood Cells

T3 Triiodothronine

T4 Thyroxine

VLDL very low density lipoproteins

w weight wk week

CONTENTS

		Page
INTR	ODUCTION	1
REVI	EW OF LITERATURE	4
1) Pro	opolis	4
a)	What is propolis (Bee Glue)?	4
b)	Chemical constituents of propolis	5
c)	Propolis and productive performance	6
d)	Propolis and blood parameters	17
e)	Propolis and the immune system	21
2) Be	e-pollen	31
a)	What is bee pollen?	31
b)	The chemical composition of bee pollen	32
c)	Antioxidant properties of bee pollen	32
d)	Bee pollen and productive performance	33
e)	Bee pollen and blood parameters	39
f)	Bee pollen and the immune system	41
3) Be	e-venom	46
a)	Composition of bee-venom	47
b)	Bee-venom and productive performance	47
c)	Bee-venom and blood parameters	48
d)	Bee-venom and the immune system	49
4) Bio	ox-Y [®]	53
Bio	x-Y [®] as a feed additive in poultry nutrition	53
	ERIALS AND METHODS	57
RESU	ULTS AND DISCUSSION	79
a)	Productive performance measurements	79
	1. Body weight and body weight gain	79
	2. Feed intake and feed conversion	82
	3. Carcass characteristics	85
	4. Protein and moisture content in the breast muscles and tibia strength	90

CONTENTS (continued)

b) Blood constituent measurements
1. Plasma protein, albumin and globulin concentrations (g/dl)
2. Plasma total lipids concentration (mg/dl)
3. Plasma total cholesterol, LDL and HDL concentrations (mg/dl)
4. Plasma calcium, phosphorus and glucose levels (mg/dl)
5. Serum ALT and AST concentrations (U/ml)
6. Plasma creatinine and uric acid concentration (mg/dl)
7. Haemoglobin level and hematocrit percentage
8. Thyroid hormones (T3 & T4) concentration (ng/dl)
c) Immunocompetence parameters
1. Humoral immune response
2. Cell mediated immune response
3. Relative weight of lymphoid organs
d) Economical efficiency (EE)
SUMMARY
REFERENCES
ARABIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Composition and calculated analysis of the basal diet fed to the experimental birds	75
2.	Chemical composition (% TIC) of ethanolic extract of propolis	76
3.	Chemical composition of the bee-pollen	77
4.	Composition of bee-venom dry matter	78
5.	Effect of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on final body weight and total body weight gain of Cobb 500 broilers at 7 weeks of age	80
6.	Effect of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on average daily feed intake and total feed conversion ratio of Cobb 500 broilers at 7 weeks of age.	83
7.	Influence of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on carcass characteristics at 7 weeks of age of Cobb 500 broilers	86
8.	Influence of some honey bee products and a growth promoter (Biox-Y®) supplementation on breast muscles protein, moisture content and tibia bone strength of 7 weeks old Cobb 500 broilers	91
9.	Influence of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on plasma total protein, albumin and globulin concentrations of Cobb 500 broilers after 6 weeks for starting the experiment	94

10.	Influence of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on plasma total lipids concentration of Cobb 500 broilers at the end of the experiment
11.	Influence of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on plasma total cholesterol, LDL and HDL levels of Cobb 500 broilers at the end of the experiment.
12.	Influence of some honey bee products and a growth promoter (Biox- Y^{\otimes}) supplementation on plasma calcium, phosphorus and glucose concentrations of Cobb 500 broilers at the end of the experiment.
13.	Influence of some honey bee products and a growth promoter (Biox- Y^{\circledR}) supplementation on AST and ALT levels of Cobb 500 broilers at the end of the experiment.
14.	Influence of some honey bee products and a growth promoter (Biox- Y^{\circledR}) supplementation on plasma Creatinine and Uric acid concentrations of Cobb 500 broilers at the end of the experiment
15.	Influence of some honey bee products and a growth promoter (Biox-Y®) supplementation on haemoglobin and hematocrit levels in Cobb 500 broilers after 6 weeks for starting the experiment
16.	Influence of some honey bee products and a growth promoter (Biox-Y®) supplementation on T3 and T4 concentrations of Cobb 500 broilers at the end of the experiment.
17.	Influence of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on humoral immune response against sheep red blood cells (SRBC's) of Cobb 500 broilers after 35 days for startine the experiment.

18.	Influence of some honey bee products and a growth promoter (Biox-Y®) supplementation on cell-mediated immune response of Cobb 500 broilers at 6 weeks of age	120
19.	Influence of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on relative weights of lymphoid organs of Cobb 500 broilers at 7 weeks of age	122
20.	Effect of some honey bee products and a growth promoter (Biox-Y [®]) supplementation on the economic efficiency of Cobb 500 broilers at market age	124

...

INTRODUCTION

Antibiotics have been added to poultry feed to improve growth performance, to stabilize intestinal microflora and to prevent infection by specific pathogenic microorganisms. However, concerns about antimicrobial resistance have existed for several decades, and recent concerns regarding the prevalence of antibiotic-resistant infections in humans have raised the controversy to new heights (Revington, 2002). For these reasons antibiotic growth promoters for poultry diets have been banned for use in the European Union and pressure from consumer groups and major poultry buyers has threatened their removal from diets in the US. Therefore, studies on alternate products that can result in promotion of growth, improved feed utilization, and maintenance of gut health are taking place (Zhang et al., 2005). Hence, there is an urgent need to identify eco-friendly alternatives to reduce antibiotic use. One of the most promising methods of reducing antibiotics is to strengthen defense mechanisms of birds through prophylactic administration of natural immunostimulants (Jung et al., 2010). One of these alternatives the natural bee products is being investigated.

Studies showed that bee products (Honey, Propolis, Pollen, Venom, Royal jelly and Wax) have several biological and pharmacological properties, such as immunomodulatory, antiinflammatory, antimicrobial, antitumor, antioxidant, among others.

Several studies have emphasised the positive effects of bee pollen on the growth performance and internal functions of broiler chickens (Kačániová *et al.*, 2013). Other apiculture products, such as propolis and honey, have gained attention due to their antibacterial (Basim *et al.*, 2006), antioxidant (Morais *et al.*, 2011) antiviral, hypolipidemic, hypoglycemic and an immunostimulating (Komosinska-Vassev *et al.*, 2015) effects. Bee-pollen can also improve the cell immune response, the antibody production speed and reinforce the immunological system (Song *et al.*, 2005).

Propolis has attracted researchers interest in the last decades because of several biological and pharmacological properties, such as immunomodulatory, antitumor, antimicrobial, antiinflammatory, antioxidant, among others (Bankova *et al.*, 2000).

Bee-venom (BV) plays a major role in the defence of bee colonies. It is produced in the venom gland of the bee, located in the abdominal cavity. This natural toxin is a complex mixture of proteins (phospholipase A2 and hyaluronidase), peptides (melittin, apamine, mast cell degranulating and adolapine) and low molecular components (histamine, dopamine and norepinephrine) [Oršolić, 2012].

It has recently been demonstrated that whole BV, and some of its components particularly melittin, possess antinociceptive and anti-inflammatory activities in very small doses (Kwon *et al.* 2002). Moreover, BV possesses a number of beneficial biological effects, such as wound-healing (Han *et al.*, 2011) and anticancer activities (Oršolić, 2012).