

MODELLING OF PROTEIN SEPARATION FROM GELATIN WASTEWATER USING AMMONIUM SULFATE

By

Mahmoud Mohamed Mahmoud Abdel Ghaffar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

MODELLING OF PROTEIN SEPARATION FROM GELATIN WASTEWATER USING AMMONIUM SULFATE

By

Mahmoud Mohamed Mahmoud Abdel Ghaffar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

Under the Supervision of

Prof. Dr. Shakinaz Taha El Sheltawy	Assistant Prof. Ayat Ossama Ghallab
Professor of Chemical Engineering	Assistant Professor of Chemical Engineering
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University

MODELLING OF PROTEIN SEPARATION FROM GELATIN WASTEWATER USING AMMONIUM SULFATE

By

Mahmoud Mohamed Mahmoud Abdel Ghaffar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Shakinaz Taha El Sheltawy	(Thesis Main Advisor)
Assistant Prof. Ayat Ossama Ghallab	(Advisor)
Prof. Dr. Mai Mohamed Kamal	(Internal Examiner)
Prof. Dr. Madiha Abdou Elkashouty Textile Industries Division, National Research Center	(External Examiner)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Mahmoud Mohamed Mahmoud

Mahmoud Abdel Ghaffar

Date of Birth: 03/08/1992 **Nationality:** Egyptian

E-mail: Abdelghaffar1992@hotamail.com

Phone: 00201001032335

Address: 43 Misr Helwan Street, Maadi, Cairo

Registration Date: 01/10/2014

Awarding Date: 2018

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Prof. Dr. Shakinaz El Sheltawy Assistant Prof. Ayat Osama Ghallab

Examiners:

Prof. Madiha Abdou Elkashouty (External examiner)
Textile Industries Division, National Research Center
Prof. Mai Mohamed Kamal (Internal examiner)
Prof. Shakinaz Taha El Sheltawy (Thesis main advisor)
Assistant Prof. Ayat Ossama Ghallab (Advisor)

Title of Thesis:

MODELLING OF PROTEIN SEPARATION FROM GELATIN WASTEWATER USING AMMONIUM SULFATE

Key Words:

Proteins; peptides; Amino acids; Ammonium Sulfate.

Summary:

Proteins are very important and have endless uses worldwide. The protein demand worldwide is increasing continuously. However, each day billions of gallons of wastewater are released domestically and industrially; the nitrogenous wastes are the worst; high percentage of nitrogenous waste in this water is proteinous wastes which contribute indeed to overall oxygen demand. Therefore, proteins, peptides and amino acids precipitation and separation from wastewater is a worth taken challenge.

The objective of our thesis is to precipitate proteins present in gelatin wastewater samples; moreover, the gelatin wastewater sample underwent citric acid hydrolysis at different durations followed by solvent precipitation using ammonium sulfate (salting out). The effect of different operating conditions was considered, analyzed and optimized. The considered time from 10 to 17 hrs, temperature from 23°C to 43°C, pH from 4 to 10 and ammonium sulfate concentration from 20% to 80%.

A fast, simple, economic and reliable method was conducted successfully to precipitate proteins present in gelatin wastewater samples achieving high precipitation efficiency.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mahmoud Mohamed Mahmoud Abdel Ghaffar Date: 27/9/2018 Signature:

Acknowledgements

First I would like to express my sincere gratitude for my advisor Prof. Dr. Shakinaz El Sheltawy for her continuous support, motivation, patience and immense knowledge.

Second, special thanks to Dr. Sayed Abdel karim for his unlimited support, advice and patience.

Third, special thanks to my second advisor Dr. Ayat Ossama for her support, patience and guidance.

Fourth, I would like to thank Dr. Mai Fouad for her care and support at the beginning of the thesis.

Fifth, I would like to thank Dr. Ali Moheeb for helping me to get the water samples used in the thesis experiments.

Sixth, I would like to thank my father and mother for encouraging me to finish my thesis successfully.

Table of Contents

DISCLAI	MER	••••••••••••	I
ACKNOV	VLEDGEMENTS		II
TABLE C	F CONTENTS		III
LIST OF	TABLES		V
LIST OF	FIGURES		VI
NOMENO	CLATURE		VIII
		ON	
1.1.		TORY OF AMINO ACIDS AND PROTEINS	
1.2.		ND PROTEINOUS CONTAMINATION	
1.3. 1.4.		HE THESIS	
CHAPTE	R 2 :LITERATURE	REVIEW	6
2.1.	Introduction		6
2.2.	STANDARD AMINO A	ACIDS IN GENETIC CODE	6
2.3.	COMPOSITION OF SO	ME PROTEINS	10
2.4.	AMINO ACIDS PRODI	UCTION TECHNIQUES	12
2.4.1.	Pı	rotein hydrolysis method	12
2.4.2.	C	hemical synthesis method	12
	2.4.3.	Biological methods	13
2.5.		ON TECHNIQUES	
2.5.1.		eparation of proteins according to size	
2.5.2.		eparation of proteins using chromatography	
2.5.3.		eparation of proteins using electrophoresis	
2.5.4.		recipitation of proteins using solvent	
_		ICAL CONSIDERATIONS IN AMMONIUM SULFATE	
2.6.1.		alting in and salting out agents	
2.6.2. 2.6.3.		mmonium sulfate priority	
		mmonium sulfate methodology of precipitation	
CHAPTE	R 3 : EXPERIMENT	TAL SET UP	35
3.1.			
3.2.			
	3.2.1.	Gelatin wastewater	35
3.2.2.		mmonium Sulfate (AS)	
3 3	3.2.3. FOUIPMENT USED	Chemicals used	37 40
1 1	EOUIPMENT USED		4()

	3.3.1.	pH meter	40
3.3.2.		Magnetic stirrer with heater	41
3.3.3.		Refrigerated micro-centrifuge	41
	3.3.4.	Sensitive weight scale	41
	3.3.5.	Spectrophotometer	42
	3.3.6.	Other equipment	42
3.4.	ENGINEERING AS	SPECTS AFFECTING THE PROCESS	43
	3.4.1.	рН	43
	3.4.2.	Temperature	43
	3.4.3.	Time	43
3.5.	METHODOLOGY		43
3.6.	GELATIN WASTE	EWATER CHARACTERISTICS	45
3.6.1.		Chemical oxygen demand (COD)	45
3.6.2.		Bio-chemical oxygen demand (BOD)	45
3.6.3.		Total suspended solids (TSS)	46
	3.6.4.	Density	47
3.7.	EXPERIMENTAL '	Technique	47
СНАРТЕ	R 4 : RESULTS	AND DISSCUSSION	49
4.1.	INTRODUCTION.		49
4.2.	CHARACTERIZAT	TION OF GELATIN WASTEWATER	49
	4.3.	EFFECTS OF DIFFERENT OPERATING CONDITIONS ON P	ROTEIN
PERCEN'	TAGE RECOVERY.		49
4.3.1.		Effect of hydrolysis time on protein percentage recovery	<i></i> 50
4.3.2.		Effect of precipitation time on protein percentage recover	ery 55
4.3.3.		The effect of temperature on protein percentage recover	y 59
4.3.4.		Effect of pH on protein percentage recovery	62
4.4.	ECONOMICAL AS	PECTS OF PROTEIN RECOVERY FROM GELATIN WASTE	WATER
USING S	SALTING-OUT APP	ROACH	67
4.4.1.		Proposed protein recovery process	67
4.4.2.		Salting Out Process Cost Estimation	68
СНАРТЕ	R 5 :CONCLUS	ION AND RECOMMENDATIONS	72
	⊥ ₹₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		I J

List of Tables

Table 2.1: Twenty amino acids listed in genetic code	6
Table 2.2: Ammonium sulfate VS. ammonium phosphate	30
Table 2.3: AS saturated solution properties VS. Temperature	31
Table 2.4: P values at different temperatures	32
Table 2.5: AS calculated weights at 0°C	34
Table 3.1: The analysis of gelatin wastewater and tanneries wastewater	37
Table 3.2: Sodium Hydroxide Specifications	38
Table 3.3: Citric Acid Specifications	39
Table 3.4: Hydrochloric Acid Specifications	40
Table 3.5: Selected hydrolyzed samples	44
Table 3.6: Different operating conditions values affecting protein recovery efficience	y 44
Table 3.7: Considered compositions of ammonium sulfate solution	44
Table 4.1: The analysis of gelatin wastewater and tanneries wastewater	49
Table 4.2: Effect of AS saturation percentage on protein percentage recovery for	
1	50
Table 4.3: Effect of AS saturation percentage on protein percentage recovery for	
sample #2	51
Table 4.4: Effect of AS saturation percentage on protein percentage recovery at t =	
min, pH =4 and T = 23° C	
Table 4.5: Effect of AS saturation percentage on protein percentage recovery at $t=3$	30
min, pH =4 and T = 23° C	
Table 4.6: Effect of AS saturation percentage on protein percentage recovery at $t = 0$	
min, pH =4 and T = 23° C	
Table 4.7: Effect of AS saturation percentage on protein percentage recovery at $T =$	
23° C, pH = 4 and t = 60 min	
Table 4.8: Effect of AS saturation percentage on protein percentage recovery at $T =$	
33° C, pH = 4 and t = 60 min	
Table 4.9: Effect of AS saturation percentage on protein percentage recovery at $T = \frac{1200}{3}$	
43° C, pH = 4 and t = 60 min	
Table 4.10: Effect of AS saturation percentage on protein percentage recovery at pH	
$4, t = 60 \text{ min and } T = 23^{\circ} \text{ C}$	
Table 4.11: Effect of AS saturation percentage on protein percentage recovery at pH	
7, $t = 60 \text{ min and } T = 23^{\circ} \text{ C}$	
Table 4.12: Effect of AS saturation percentage on protein percentage recovery at pH	
10, $t = 60 \text{ min and } T = 23^{\circ} \text{ C}$	65
Table 4.13: The best parameters values for salting out process	
Table 4.14: Chemicals used in protein recovery process	67
Table 4.15: Equipment cost estimation in 1998	
Table 4.16: Detailed total capital investment calculation	
Table 4.17: Detailed direct production cost calculation	/1

List of Figures

Figure 1.1: Amino acid composition	1
Figure 1.2: Amino acids, peptides and protein sequencing	2
Figure 1.3: Protein importance and vitality	
Figure 1.4: Proteinous waste cycle	
Figure 1.5: Dual benefits for protein separation from wastewater	
Figure 2.1: Casein AAs composition	
Figure 2.2: Gelatin AAs composition	
Figure 2.3: Soybean AAs composition	
Figure 2.4: Protein separation techniques	
Figure 2.5: Protein separation techniques subdivision	15
Figure 2.6: Proteins separation by dialysis	
Figure 2.7: Proteins separation through ion exchange chromatography	
Figure 2.8: Proteins separation through affinity chromatography	
Figure 2.9: Proteins separation through size exclusion chromatography	
Figure 2.10: Proteins separation by gel electrophoresis	
Figure 2.11: Proteins separation by Iso-electric focusing	
Figure 2.12: Proteins separation by Iso-electric focusing	
Figure 2.13: Proteins separation by two dimensional electrophoresis	
Figure 2.14: Ammonium sulfate protein precipitation	
Figure 2.15: Salting in and salting out	
Figure 2.16: Ammonium sulfate priority reasons	
Figure 2.17: Hofmeister Series for Anions and Cations	
Figure 2.18: AS weight online calculator interface	33
Figure 3.1: Google maps screenshot for the Amin for Gelatin Factory	
Figure 3.2: pH meter	40
Figure 3.3: Magnetic stirrer with hot plate	41
Figure 3.4: Refrigerated micro-centrifuge	
Figure 3.5: Sensitive weight scale	
Figure 3.6: Bio-systems spectrophotometer	
Figure 3.7: UV spectrophotometer for COD measurement	
Figure 3.8: BOD oxygen meter	
Figure 3.9: TSS portable hand meter	
Figure 3.10: Densitometer used to measure liquid density	47
Figure 4.1: The effect of the hydrolysis time on protein percentage recovery at pH	
$t = 60 \text{ min and } T = 23^{\circ} \text{ C}$	52
Figure 4.2: Protein percentage recovery at the five selected AS Saturation Percentage	
for sample #1	_
Figure 4.3: Protein percentage recovery at the five selected AS Saturation Percent	ages
for sample #2	53
Figure 4.4: Comparison between protein percentage recoveries at both hydrolysis	
	54
Figure 4.5: Effect of time on protein percentage recovery at pH =4 and $T = 23^{\circ}C$	
Figure 4.6: Protein percentage recovery at $t = 15$ min, $pH = 4$ and $T = 23$ °C	
Figure 4.7: Protein percentage recovery at $t = 30$ min, pH =4 and $T = 23$ °C	
Figure 4.8: Protein percentage recovery at $t = 60$ min, pH =4 and $T = 23$ °C	
Figure 4.9: Protein percentage recoveries at three different contact times	

Figure 4.10: Effect of temperature on protein percentage recovery at pH = 4 and $t = 60$	
min5	9
Figure 4.11: Protein precipitation recovery at $T = 23^{\circ}$ C, pH =4 and $t = 60$ min6	0
Figure 4.12: Protein precipitation recovery at $T = 33^{\circ}$ C, pH =4 and $t = 60$ min6	0
Figure 4.13: Protein precipitation recovery at $T = 43^{\circ}$ C, pH =4 and t = 60 min6	1
Figure 4.14: protein percentage recoveries at three different temperatures6	1
Figure 4.15: Effect of pH on protein percentage recovery at t=60 min and T= 23° C6	3
Figure 4.16: Protein precipitation recovery at pH 4, $t = 60$ min and $T = 23^{\circ}$ C6	3
Figure 4.17: Protein precipitation recovery at pH = 7, $t = 60$ min and $T = 23^{\circ}$ C6	4
Figure 4.18: Protein precipitation recovery at pH = 10, $t = 60$ min and $T = 23^{\circ}$ C6	4
Figure 4.19: Protein percentage recoveries at three different pH values6	6
Figure 4.20: Process Flow Diagram for protein recovery process6	8
Figure 4.21: Gantt chart for protein recovery process6	8

Nomenclature

AA Amino acid

Ala Alanine
Arg Arginine

Asp Aspargine or Aspartic acid

AS Ammonium sulfate

Cys Cysteine

Glu Glutamine or Glutamic acid

Gly Glycine
His Histidine
Ile Isoleucine
KDa Kilo Dalton
Leu Leucine
Lys Lysine

Met Methionine

Phe Phenylalanine

Pro Proline
Ser Serine
Thr Threonine
Trp Tryptophan

Tyr Tyrosine
Val

Valine

Rpm Revolution per minute
TSS total suspended solids

Time T
Protein concentration C
Protein percentage recovery W%
Temperature T

Abstract

Proteins, peptides and amino acids are very important and have endless uses worldwide. The protein demand worldwide is increasing continuously. However, each day billions of gallons of wastewater are released domestically and industrially; the nitrogenous wastes are the worst; high percentage of nitrogenous waste in this water is proteinous wastes which contribute indeed to overall oxygen demand. Therefore, proteins, peptides and amino acids precipitation and separation from wastewater is a worth taken challenge.

Proteins, peptides and amino acids can be separated according to size through dialysis, ultra and nano filtration; then, they can be separated according to chromatography through size exclusion chromatography, affinity chromatography and ion-exchange chromatography; also, they can be separated through electrophoresis through gel electrophoresis, Iso-electric focusing and two dimensional electrophoresis; as well as through solvent precipitation using metal salts, organic solvents and organic acids.

In this thesis, all these precipitation and separation technologies are explained as well as comprehending the related previous work done regarding these technologies within the last 18 years through a literature survey.

The objective of the present work is to precipitate proteins present in gelatin samples; moreover, the gelatin sample underwent citric acid hydrolysis at different durations (10 - 17 hrs) followed by solvent precipitation using ammonium sulfate (salting out). The effect of different operating conditions was considered, analyzed and optimized.

A fast, simple, economic and reliable method was conducted successfully to precipitate proteins present in gelatin samples achieving high precipitation efficiency.

CHAPTER 1: INTRODUCTION

1.1. Definition and History of Amino Acids and Proteins

AAs are simple organic compounds containing carboxylic group and amino group as illustrated in figure 1.1. There are about 500 types of amino acids, twenty of which are in the genetic code. They are divided into several groups according to their size, hydrophobicity, hydrophylicity and functional group (Berg, Tymoczko, & Stryer, 2002).

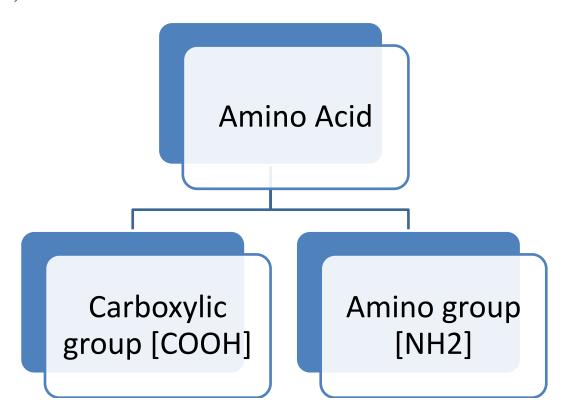


Figure 1.1: Amino acid composition

"Amino acids are the structural units that make up proteins. They join together to form short polymer chains called peptides or longer chains called either polypeptides or proteins" as shown in figure 1.2. (Mohanty, Jayasri, & Elumalai, 2012)

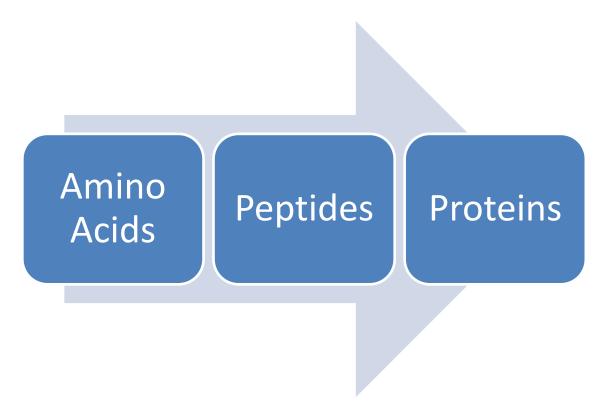


Figure 1.2: Amino acids, peptides and protein sequencing

Almost two hundred years ago, protein was identified as a primary material; however, during the last few decades, proteins and peptides were discovered in the brain, heart, skin and many other tissues and organs. (Wieland & Bodanszky, 1991)

In 1806, the French chemists Louis Nicolas Vauquelin and Pierre Jean Robiquet discovered the first amino acid Asp. In 1810, Cys was discovered and later in 1820, Gly and Leu were discovered. (Mohanty, Jayasri et al, 2012)

Amino acids are considered amphoteric compounds which can act as an acid or a base; moreover, they are considered as ampholytes which are amphoteric compounds which exist mostly as zwitterions (molecules that can be positively charged or negatively charged depending on the pH). (McNaught and Wilkinson, 1997)

1.2. Protein Vitality and Proteinous Contamination

Proteins, peptides and AAs are vital for every living organism; they are present in skin, hair, muscles, tendons and bone; they hold together to provide the organism's body its structure and regulate the body chemistry through hormones and enzymes; they affect the transport of oxygen and other vital substances. (Reucsh, 2013)

Proteins are necessary components in the diet of all animals and humans; they help animals and humans in surviving and fighting disease through immune-globulins and white blood cells; moreover, all antibiotics and vaccines are protein based. (Reucsh, 2013)

The worldwide annual consumption of amino acids was 3.3 million tons in 2005 (Drauz et al., 2007) and increased to 6.19 million tons in 2013. (Grand View Research, 2015) The human diet protein demand is expected to double in 2050 as the population