# EFFICACY OF REPETITIVE PERIPHERAL MAGNETIC STIMULATION ON THE FUNCTIONAL RECOVERY IN STROKE PATIENTS

A thesis presented for the partial fulfillment of MD Degree in Neurology

By

#### Fatma Fathalla Mahmoud Kenawy

M.B.B.Ch, M. Sc. Ain Shams University Supervised By

#### Prof. Dr. Samia Ashour Mohamed Helal

Professor of Neurology Faculty of Medicine, Ain-Shams University

#### Prof. Dr. Mohamed Mahmoud Moustafa

Professor of Neurology Faculty of Medicine, Ain-Shams University

#### Prof. Dr. Nevine Medhat El Nahas

Professor of Neurology Faculty of Medicine, Ain-Shams University

### Prof. Dr Lobna Mohamed El Nabil

Professor of Neurology Faculty of Medicine, Ain-Shams University

#### Prof. Dr. Mohamed Amir Tork

Assistant Professor of Neurology Faculty of Medicine, Ain-Shams University



Faculty of Medicine Ain Shams University Cairo, 2018



## Acknowledgements

Firstly, I would like to express my deep gratitude to **Prof. Dr.**Samia Ashour, professor of Neurology, faculty of medicine, Ain Shams University, for her guidance and support as well as her invaluable remarks. I extend to her my feelings of being honored to work under her considerate super-vision.

To **Prof. Dr. Mohamed Moustafa**, professor of neurology, faculty of medicine, Ain Shams University, I express my profound gratefulness. I sincerely appreciate his close and kind supervision as well as his perfectionism which added value to my work

I would also like to extend my appreciation and thankfulness to **Prof. Dr. Nevine El Nahas**, professor of Neurology, faculty of medicine, Ain Shams University, for her immense patience and great attention to details. Her great knowledge paved the way for this work to appear as it is now. Her encouragement and trust inspired me through hard times.

To **Prof. Dr Lobna El Nabil**, professor of neurology, faculty of medicine, Ain Shams University, I express my profound gratefulness. I sincerely appreciate her close and kind supervision as well as her perfectionism which added value to my work.

I am also deeply grateful to **Prof. Dr. Mohamed Amir Tork**, assistant professor of Neurology, faculty of medicine, Ain Shams

University. I am grateful for his helpful notes and recommendations. His genuine and kind help enabled me to achieve this work.

Furthermore, I would like to express my sense of gratitude to **Dr. Ahmed Mohamed Al bokl** and **Dr. Eman Hamid**, lecturers of Neurology, faculty of medicine, Ain Shams university, for the genuine help they provided in statistics and discussion as well as their continuous mentorship.

I want to extend my appreciation to all my professors and colleagues at the department of neuropsychiatry, Ain Shams University who influenced, encouraged and inspired me throughout the years.

## **List of Contents**

- Acknowledgements iii
- List of Abbreviations vi
- List of Figures viii
- List of Tables x
- Introduction and Aim of work
- Chapter 1: Pathophysiology of post stroke spasticity 5
- Chapter 2: Clinical picture and management of post stroke spasticity 22
- Chapter 3: Peripheral stimulation in the management of spasticity 43
- Chapter 4: Other modalities of peripheral stimulation in spasticity management 56
- Subjects and Methods 66
- Results 76
- Discussion 98
- Conclusion and Recommendations 110
- Summary 111
- References 113
- Appendix 143

## List of Abbreviations

**ANOVA** One-way analysis of variance

**CMA** Cingulate Motor Areas

**CST** Corticospinal Tract

**cTBS** Continuous Theta Burst Stimulation

**EMG** Electromyogram

**ES** Electrical Stimulation

**ESWT** Extracorporeal Shock-Wave Therapy

**GARS** Gait Assessment Rating Scale

**iTBS** Intermittent Theta Burst Stimulation iTBS

**LTD** Long-Term Depression

**LTP** Long-Term Potentiation

MAS Modified Ashworth Scale

**MEP** Motor Evoked Potentials

MRI Magnetic resonance imaging

MS Multiple Sclerosis

**NMES** Neuromuscular Electrical Stimulation

**PMS** Peripheral magnetic stimulation

**ROM** Range of Motion

**rPMS** repetitive Peripheral Magnetic Stimulation

**RST** Reticulospinal Tract

**rTMS** Transcranial Magnetic Stimulation

**SMA** Supplementary Motor Area

**TBS** Theta Burst Stimulation

**tDCS** Transcranial Direct Current Stimulation

**TENS** Transcutaneous Electric Nerve Stimulation

**UMN** Upper Motor Neuron

VST Vestibulospinal Tract

**WBV** Whole body vibration

# **List of Figures**

| Figure details                                                                      | Page |
|-------------------------------------------------------------------------------------|------|
| 1. Illustration of supraspinal control of spinal stretch reflex.                    | 14   |
| 2. Examples of some postural abnormalities seen in post stroke spasticity           | 25   |
| 3. Common gait patterns in spastic hemiparesis                                      | 27   |
| 4. Mechanism of action of botulinum toxin.                                          | 39   |
| 5. The patterns and effects of TBS                                                  | 50   |
| 6. MagVenture dynamic liquid cooled Film Coil connected to Magpro X100 Stimulator.  | 71   |
| 7. Flow diagram of recruited patients and drop out in the study                     | 75   |
| <b>8.</b> Upper limb tone difference between T0 and T1 among active and sham groups | 83   |
| <b>9.</b> Intergroup mean difference of Fugl-Meyer score between T0 and T1.         | 84   |

| 10.Intergroup mean difference in lower limb tone between T0 and T1                                                                                       | 86 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| <b>11.</b> Intergroup mean difference in Fugl-Meyer scale in lower limb between T0 and T1 .The increase in score correlates with functional improvement. |    |  |
| <b>12.</b> Intergroup mean difference in total GARS in lower limb between T0 and T1                                                                      | 88 |  |
| 13.GARS total and differential score in the active group                                                                                                 | 89 |  |
| <b>14.</b> Fugl Meyer Upper limb score across 3 time points.                                                                                             | 93 |  |
| <b>15.</b> Fugl-Meyer lower limb mean difference across 3 time points.                                                                                   | 96 |  |
| <b>16.</b> GARS score across 3 time points                                                                                                               | 97 |  |

## **List of Tables**

| 1. Summary of clinical features of spasticity                                                      | 21 |
|----------------------------------------------------------------------------------------------------|----|
| 2. MRC scale                                                                                       | 67 |
| 3. Summary of stimulated muscle groups, corresponding muscles and stimulation sites                | 70 |
| 4. Demographics and clinical characteristics of patients in active and sham groups                 | 78 |
| 5. Comparison between active and sham groups as regard baseline Upper limb characteristics         | 78 |
| 6. Comparison between active and sham groups as regard baseline lower limb characteristics         | 78 |
| 7. Comparison between active and sham groups as regard baseline functional scores                  | 79 |
| 8. Upper limb tone difference between T0 and T1 among active and sham groups                       | 80 |
| 9. Upper Limb Power (flexors & extensor) difference between T0 and T1 among active and sham groups | 81 |
| 10.Lower limb tone difference between T0 and T1 among active and sham groups                       | 83 |
| 11.Lower limb power difference between T0 and T1 among active and sham groups                      | 85 |

| 12.GARS difference between T0 and T1 among active and sham groups                                     | 87 |
|-------------------------------------------------------------------------------------------------------|----|
| 13.Comparison between upper limb tone difference across 3 time points by RMANOVA with Post Hoc test   | 89 |
| 14.Comparison between upper limb power difference across 3 time points by RMANOVA with Post Hoc test  | 91 |
| 15.Comparison between lower limb tone differences across 3 time points by RMANOVA with Post Hoc test  | 93 |
| 16.Comparison between lower limb power differences across 3 time points by RMANOVA with Post Hoc test | 93 |

## Introduction

Optimizing the management of stroke is a national priority. Stroke is the third most common cause of disability affecting millions of people worldwide with estimate of 25 million stroke survivor in 2013 (*Feigin et al.*, 2017).

Improving limb functions has been the concern of numerous researches. Spasticity is often blamed for the disability of the upper limb. In this regard, invasive or non-invasive brain stimulations, that have the capacity to modulate cortical excitability and to optimize brain plasticity, were studied. Several studies showed that repetitive transcranial magnetic stimulation (rTMS) has beneficial effects on motor recovery that can be translated to clinically meaningful improvement in disability in patients with post-stroke hemiparesis (*Khedr et al.*, 2005; *Emara et al.*, 2010; *Kim et al.*, 2010). Despite that, a later systemic review surprisingly didn't recommend rTMS for post stroke motor rehabilitation (*Hao et al.*, 2013).

Theta burst stimulation (TBS) is a new faster modality of the conventional rTMS. Two different methods have been described: intermittent theta burst stimulation (iTBS) and continuous theta burst stimulation (cTBS) with facilitating and inhibitory effects, respectively. The iTBS involves the application of bursts of three pulses at a frequency of 50 Hz every 200 millisecond (*Bulteau et al.*, 2017). Centrally applied iTBS was investigated in the management of neurological disorders as post stroke spasticity (*Kim et al.*, 2015) and also in psychiatric disorders (*Li et al.*, 2014; *Desmyter et al.*, 2016 & *Bulteau et al.*, 2017) all showing variable but promising results.

Another application of the rTMS is the repetitive peripheral magnetic stimulation (rPMS) where the rTMS is either directed to the nerve supplying the affected muscle or to the muscle itself. Werner studied the effect of rPMS on muscle of upper limb in chronic stroke patients, and results showed superiority over sham (Werner et al., 2016).

To date, there is very limited data on the effect of application of iTBS directly to the spastic muscles and further studies were recommended.

## Aim of the work

The aim of the work was to study the efficacy of peripheral iTBS on the limb spasticity following stroke and to evaluate the effects of peripheral iTBS on the functional recovery following stroke.