PATHOLOGICAL AND MOLECULAR STUDIES ON LATE BLIGHT DISEASE IN TOMATO CAUSED BY Phytophthora infestans

By

RAMADAN AHMED MOHAMED ARAFA

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Kafrelsheikh Univ., Egypt, 2007 M.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Kafrelsheikh Univ., Egypt, 2012

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Plant Pathology)

Department of Plant Pathology
Faculty of Agriculture
Cairo University
EGYPT

2018

APPROVAL SHEET

PATHOLOGICAL AND MOLECULAR STUDIES ON LATE BLIGHT DISEASE IN TOMATO CAUSED BY Phytophthora infestans

Ph.D. Thesis In Agric. Sci. (Plant Pathology)

 $\mathbf{B}\mathbf{v}$

RAMADAN AHMED MOHAMED ARAFA

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Kafrelsheikh Univ., Egypt, 2007 M.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Kafrelsheikh Univ., Egypt, 2012

APPROVAL COMMITTEE

Dr. SALAH MOHAMED ABD EL-MOAMEN
Head Research, Plant Pathol. Res. Inst., Agricultural Research Center.
Dr. MAGDY MOHAMED SABER
Professor of Plant Pathology, Fac. Agric., Cairo University.
Dr. NOUR ELDEN KAMEL SOLIMAN
Professor of Plant Pathology, Fac. Agric., Cairo University
Dr. OLFAT MOHAMED MOUSA
Professor of Plant Pathology, Fac. Agric., Cairo University.

Date: / / 2018

SUPERVISION SHEET

PATHOLOGICAL AND MOLECULAR STUDIES ON LATE BLIGHT DISEASE IN TOMATO CAUSED BY *Phytophthora infestans*

Ph.D. Thesis
In
Agric. Sci. (Plant Pathology)

 $\mathbf{B}\mathbf{v}$

RAMADAN AHMED MOHAMED ARAFA

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Kafrelsheikh Univ., Egypt, 2007 M.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Kafrelsheikh Univ., Egypt, 2012

SUPERVISION COMMITTEE

Dr. OLFAT MOHAMED MOUSA Professor of Plant Pathology, Fac. Agric., Cairo University

Dr. NOUR ELDEN KAMEL SOLIMAN Professor of Plant Pathology, Fac. Agric., Cairo University

Dr. KENTA SHIRASAWA Senior scientist, Kazusa DNA Research Institute, Japan

Dr. SAID MOHAMED KAMEL Senior Researcher of plant pathology, Plant Pathology Research Institute, Agricultural Research Center

Name of Candidate: Ramadan Ahmed Mohamed Arafa

Degree: Ph.D.

Title of Thesis: Pathological and Molecular Studies on Late Blight Disease

in Tomato Caused by Phytophthora infestans

Supervisors: Dr. Olfat Mohamed Mousa

Dr. Nour Elden Kamel Soliman

Dr. Kenta Shirasawa

Dr. Said Mohamed Kamel

Department: Plant Pathology **Branch:** Plant Pathology

Approval: 26 / 8 / 2018

ABSTRACT

Our results demonstrated that all Egyptian *P. infestans* isolates were identified as A1 mating type except only one isolate EG_9 was self-fertile (SF), however the majority of Japanese isolates were A2 mating type. Additionally, based on PCR-RFLP approach all Egyptian isolates were the Ia mt-DNA haplotype, whereas the Japanese isolates were IIa. Genomewide SSR analysis of *P. infestans* populations revealed that 45 alleles were detected using 16 microsatellite markers. According to presence or absence of P. infestans effector genes AVR1 was absent in all tested samples, however AVR4 effector gene was present in all isolates. Intriguingly, 996 high-quality SNPs marker were detected using double-digest restriction site-associated DNA sequencing (ddRAD-Seq) technology. Interestingly, the comparative genomics of *P. infestans* populations showed that the copy number variation (CNV) percent ranged from 0.4 to 12.5 %. The highest late blight resistance was detected in S. habrochaites accessions LA1777, LA1352, LA2855, LA1347, LA1718 and LA1295, with disease severities ranging from 4.5 to 13.5 %. Two quantitative trait loci on chromosomes 12 and 6 for resistance to an aggressive two Egyptian isolates of *P. infestans* EG 11 and EG 12, respectively, were identified. Whole-genome resequencing analysis revealed that two genes with missense mutations, Solyc06g071810.1 and Solyc06g083640.3, were considered to be potential candidates for disease resistance.

Key words: Tomato, late blight, resistance genes, genetic markers, wild species.

DEDICATION

I dedicate this work to my parents, my brothers and my sisters for all the support they lovely offered during my post-graduate studies.

ACKNOWLEDGMENT

I praise and thank ALLAH, the lord of honor and glory, the most beneficent, the most merciful for his endless giving and grace in sustaining me.

First of all, I express my deepest sense of gratitude to my supervision committee **Prof. Dr. Olfat M. Mossa,** Professor of Plant Pathology, Faculty of Agriculture, Cairo University, **Prof. Dr. Nour Elden K, Soliman,** Professor of Plant Pathology, Faculty of Agriculture, Cairo University, **Dr. Kenta Shirasawa,** Senior scientist, Kazusa DNA Research Institute, **Dr. Said M. Kamel,** Senior researcher of Plant Pathology, Plant Pathology Research Institute, Agricultural Research Center for their valuable scientific supervision, patience, guidance, encouragement and excellent advice through this study.

I would like to express my thanks to **Dr. Mohamed T. Rakha**, associate Professor of Horticulture, Faculty of Agriculture, Kafrelsheikh University for his support, precious suggestions and contribution during the accomplishment of the course of study.

I owe special thanks to **Dr. Sherif M. A. El-Ganainy,** researcher of Plant Pathology, Plant Pathology Research Institute, Agricultural Research Center for his help and encouragement during the present work.

Also, I want to thank **Prof. Dr. Elmahdy Metwally**, Professor of Horticulture, Faculty of Agriculture, Kafrelsheikh University for his help for crossing and develop the F2 seeds.

I am very thankful to my colleague **Eng. Sahar Esmail**, software engineer at Forecasting and Early Warning Unit, ARC for her assistance, patience and valuable recommendations during the bioinformatics analysis through this work.

I would also like to thank all members of Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center and Plant Pathology Department, Faculty of Agriculture, Cairo University for their help and support through this study.

Also, Many thanks to all members at The Laboratory of Plant Genomics and Genetics, Kazusa DNA Research Institute for their welcome, guidance, technical assistance and friendship during achievement of my thesis.

I would like to thanks The Ministry of Higher Education and Scientific Research (MHESR), Egypt, and the Kazusa DNA Research Institute Foundation, Japan for their scientific and financial support throughout this investigation.

Thanks to anyone helped me directly or indirectly to complete this work.

Finally, I express my sincere thanks and appreciation to my parents, brothers, sisters, my wife and my sons have been a source of strength and support throughout my academic career.

CONTENTS

	RODUCTION
\mathbf{EV}	IEW OF LITERATURE
	Economic importance and origin of tomato
	Phytophthora infestans and epidemiology of late
	blight disease
	Symptoms of late blight disease
	Modern taxonomy, life cycle and biology of P.
	infestans
	Migration of <i>P. infestans</i>
٠.	a. Phenotypic markers
	(1) Mating type determination
	(2) Race determination (virulence)
	(3) Metalaxyl sensitivity
	b. Genotypic markers
	(1) Mitochondrial DNA haplotype
	(2) Isozymes
	(3) RFLP fingerprinting using probe RG-57
	(4) Simple Sequence Repeats (SSRs)
	(5) Amplified fragment length polymorphisms (AFLPs)
7.	Management strategies of late blight disease
	Tomato wild species and late blight resistance
	Genetics and breeding of tomato to P. infestans
	resistance
	Next-generation sequencing technologies for
	genotyping and SNP markers discovery
	Restriction-site-associated DNA sequencing (RAD-
4	seq)
	Impacts of next-generation sequencing in
•	agriculture
L <i>Z</i> .	Plant Innate Immunity
	a. PAMP-Triggered Immunity
	b. Effector-Triggered Immunity

c.	Effectors
	RIALS AND METHODS
1. La	te blight specimens collection
	lation of <i>Phytophthora infestans</i> populations.
	Rye A sucrose agar (RSA) medium
	Pea agar medium
c. \	V8 agar medium
3. Ma	ating type assay
4. DN	VA extraction
5. As:	sessment of mitochondrial DNA haplotypes
in t	the P. infestans populations
	nome-wide SSR analysis of P. infestans
poj	pulations
	quence and presence or absence effector
ger	nes of P. infestans
8. Ge	notyping of P. infestans isolates using
dd	RAD-Seq technology
9. WI	hole-genome shotgun resequencing of P.
•	estans isolates
	ata processing and effector protein detection.
	ata analysis
	etermination of new genetic sources
	nferring late blight resistance in tomato
	Plant materials
	Isolate selection and maintenance
	Inoculum preparation
a.	Inoculation and disease assessment using isolate
12 D	EG_7etermine the most effectiveness of resistance
	nes (<i>Ph</i> -genes) against aggressive Egyptian lates of <i>P. infestans</i>
	· ·
	atistical analysisentification of quantitative trait loci
	ociated with late blight resistance
	Phenotypic assessment of disease response for
	preeding materials
L	/10001115 1114tO11410