ISOLATION OF TWO SALT STRESS RELATED GENES FROM SORGHUM (Sorghum bicolor) AND MOLECULAR EVALUATION OF THEIR ROLE IN YEAST

By

MAHMOUD ABDELRAHIM BASRY BEKHIT

B.Sc. Agric. Sci. (Genetics), Fac. Agric., Assiut Univ., Egypt, 2003. M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., Egypt, 2012.

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

2018

APPROVAL SHEET

ISOLATION OF TWO SALT STRESS RELATED GENES FROM SORGHUM (Sorghum bicolor) AND MOLECULAR EVALUATION OF THEIR ROLE IN YEAST

Ph.D. Thesis In Agricultural Sci. (Genetics)

By

MAHMOUD ABDELRAHIM BASRY BEKHIT

B.Sc. Agric. Sci. (Genetics), Fac. Agric., Assiut Univ., Egypt, 2003. M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., Egypt, 2012.

APPROVAL COMMITEE

Dr. AHMED ABDEL-SALAM MAHMOUD
Professor of Genetics, Fac. Agric., Zagazig University.
Dr. MONA HASHIM AHMED HUSSIEN
Professor of Genetics, Fac. Agric., Cairo University.
Dr. SALAH EL-DIN SAYED MOHAMED EL-ASSAL
Professor of Genetics, Fac. Agric., Cairo University.
Dr. EBTISSAM HUSSEIN ALY HUSSEIN
Professor of Genetics, Fac. Agric., Cairo University.

Date: / /2018

SUPERVISION SHEET

ISOLATION OF TWO SALT STRESS RELATED GENES FROM SORGHUM (Sorghum bicolor) AND MOLECULAR EVALUATION OF THEIR ROLE IN YEAST

Ph.D. Thesis
In
Agricultural Sci. (Genetics)

By

MAHMOUD ABDELRAHIM BASRY BEKHIT

B.Sc. Agric. Sci. (Genetics), Fac. Agric., Assiut Univ., Egypt, 2003. M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., Egypt, 2011.

SUPERVISION COMMITTEE

Dr. EBTISSAM HUSSEIN ALY HUSSEIN Professor of Genetics, Fac. Agric., Cairo University

Dr. SALAH EL-DIN SAYED MOHAMED EL-ASSAL Professor of Genetics, Fac. Agric., Cairo University

Dr. SHIREEN KAMAL ASSEM

Professor of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute, Agricultural Research Center Name of Candidate: Mahmoud Abd-El Rahim Basry Degree: Ph.D.

Title of Thesis: Isolation of two salt stress related genes from sorghum (Sorghum

biocolor) and molecular evaluation of their role in yeast.

Supervisors: Dr. Ebtissam Hussein Aly Hussein

Dr. Salah El-Din Sayed Mohamed El-Assal

Dr. Shireen Kamal Assem

Department: Genetics Approval: 29 / 08 / 2018

ABSTRACT

Two salt stress related genes namely, Glyoxalase II (Gly II) and salt overly sensitive (SOS2) were isolated by RT-PCR from an Egyptian Sorghum bicolor cultivar. The RT-PCR amplified bands for the SbGly II and SbSOS2 genes were 1011 and 1350 bp in size, encoding polypeptide chain of 336 and 449 amino acids with deduced molecular mass 37.0 and 50.3 kDa, respectively. The nucleotide sequences of the SbGly II and SbSOS2 genes were BLASTn searched at NCBI to explore the homologous genes. The sequence comparison of both genes (SbGly II and SbSOS2) with the published sequences in NCBI database revealed that the SbSOS2 gene is a unique gene since it showed an amino acid sequence homology ranging from 99-84% with the corresponding sequences in the database. While, the Egyptian SbGly II gene revealed 100% homology with the published S. bicolor. The full length of the SbGly II and SbSOS2 genes were submitted to the GeneBank database with accession number KP883296 and KY202762, respectively. The phylogenetic analysis for SbGly II and SbSOS2 from Egyptian sorghum showed a high similarity with Gly II and SOS2 from Zea mays. While they were distant from those of Oryza sativa. Both genes were cloned individually into the pYES2 expression vector for expression in Saccharomyces cerevisia. Yeast growth response was examined at OD600 under different NaCl stress concentration, i.e. 0, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2 and 2.3 M.The results revealed that the growth of the transgenic yeasts harboring the SbGlyII-pYES2 or the SbSOS2-pYES2 was significantly higher than the controls under the different concentrations of NaCl. The expression of the two alleles in the transgenic yeast cells was verified by RT-PCR. Moreover, analysis of the proline content revealed a significant increase in the transgenic yeasts harboring the SbGlv II and the SbSOS2 genes compared to the control. The present results suggested that the SbGly II and SbSOS2 could be modulated for improving the salt tolerance of different eukaryotic systems.

Key words: Salt stress, *glyoxalase II*, *SOS2*, *Saccharomyces cerevisiae*, Proline content, *Sorghum bicolor* and RT-PCR.

DEDICATION

I dedicate this work to whom my heart felt thanks: to my father and mother for all the support and encouragement they continually offered along the period of my post-graduation, to my wife (Rehan), to my daughter (Malak), to my brothers (Abd El-Rahman and Taha), to my sister (Asmaa) for their endless support along the period of my post-graduation.

ACKNOWLEDGEMENT

At first, I would like to express my thanks to ALLAH, my God for his blessing that allowed me to fulfill this work.

Special thanks and sincere appreciation to **Dr. EBTISSAM**H. A. HUSSEIN, Professor of Genetics, Faculty of Agriculture,
Cairo University, for her assistance, guidance, encouragement and
support throughout the work and during the writing of the thesis.

My deepest and sincere graduate to **Dr. SALAh ELDIN SAYED MOHAMED EL-ASSAL** Professor of Genetics, Faculty of Agriculture, Cairo University for directing supervision, continuous encouragement continuous support of the research work and constant helping.

Also, I would like to express my gratitude to **Dr.** SHIREEN KAMAL ASSEM, Professor of Molecular Biology and vice president for research at ARC for her innovative precious supervision, endless help, continuous encouragement, excellent support, objective criticism which were great asset to this dissertation, her constructive ideas to solve the problems I faced.

Many thanks are due to my colleagues in PTBL lab HEBA, TOKA and NOURHAN for cooperating and supporting the Agricultural Genetic Engineering Research Institute (AGERI) providing the facilities and supplies for this research, all the members of AGERI for their continuous help, facilities especially Dr. MMOHAMED ABDEL-SADEK BADAWi for his kindness and moral support and many thanks to all the members of the Genetics Department, Faculty of Agriculture, Cairo University.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Molecular mechanisms of salt stress tolerance in plants	5
a. Ion transporters	6
b. Transcription factors	10
c. Signal transduction.	15
d. Compatible solutes	19
2. Adverse effect of salt stress on plants	27
3. The Glyoxalase mechanism and salt tolerance	31
a. Methylglyoxal	31
b. The Glyoxalase pathway	32
(1)The Glyoxalase I (GlyI) gene	33
(2)The Glyoxalase II(GlyII) gene	35
4. The salt overly sensitive (SOS) mechanism and salt stress tolerance	38
a. The SOS1 gene.	39
b. The SOS2 gene	42
c. The SOS3 gene	45

5. Sorghum (Sorghum bicolor L.) and salt stress tolerance	
6. Yeast (Saccharomyces cerevisiae) and salt stress tolerance	52
MATERIALS AND METHODS	50
1. Plant material and seed germination treatment	50
2. Isolation of the glyoxalase II (Gly II) and salt overly sensitive2 (SOS2) genes from Egyptian sorghum	5'
a. Total RNA isolation from Egyptian sorghum	5
b. RT-PCR reaction of the Sbgly II and SbSOS2 genes	5
3. Cloning of the PCR products in pGEM®-T cloning vector.	6
4. Sequencing and bioinformatics analysis of the full length SbGly II and SbSOS2 alleles	6
a. Sequencing analysis	6
b.Sequence BLASTn of the full length coding sequence of the <i>SbGly II</i> and <i>SbSOS2</i> alleles.	6
c. Submission of a full length <i>SbGly II</i> and <i>SbSOS2</i> sequences in GenBank at NCBI	6
d. Protein sequence alignment and phylogenetic tree analysis of the <i>SbGly II</i> and <i>SOS2</i> genes	6
e. Primary structure analysis	6
f. Secondary structure analysis.	6

	genes in yeast as fast heterologous model system
a.	Yeast strain (INVSc1)
b	. The pYES2 expression vector
c	Sub-cloning of the SbGly II and SbSOS2 alleles into the pYES2 vector
d	. Transformation of the recombinant expression vectors into
	yeast cells
e	Expression study of SbGly II and SbSOS2 alleles in Saccharomyces cerevisiae under salt stress
	(1)Complementation analysis of the <i>SbGly II</i> and <i>SbSOS2</i> genes in transgenic yeast at different concentrations of NaCl
	(2)RT-PCR expression analysis
	(3)Determination of the intracellular proline content
6. St	atistical Analysis
RES	SULTS AND DISCUSSION
	colation of the SbGly II and SbSOS2 alleles from Egyptian orghum
2. Cl	oning of the PCR products for the isolated genes
3. V	erification of the full length SbGly II and SbSOS2 genes through restriction digestion
	quencing and bioinformatics analysis of the full length Gly II and SbSOS2 alleles
a.	Sequencing of SbGly II and SbSOS2 alleles
b.	Sequence BLASTn of the full length coding sequence of the <i>SbGly II</i> and <i>SbSOS2</i> alleles
c.	Protein alignment and phylogenetic analysis of the SbGly II and SbSOS2 genes.

d. Primary structure analysis of the SbGly II and SbSOS2 proteins	104
e. Secondary structure analysis of the SbGly II and SbSOS2 protein	109
5. Expression and physiological evaluation of the SbGly II and SbSOS2 genes in yeast	110
a. Sub-cloning of the Egyptian <i>SbGly II</i> and <i>SbSOS2</i> alleles into the pYES2 vector.	111
b. Yeast transformation and the verification of the presence of the isolated genes in transformed yeast.	112
c. Expression study of the <i>SbGly II</i> and <i>SbSOS2</i> alleles in <i>Saccharomyces cerevisiae</i> under salt stress	115
(1) Complementation analysis of the <i>SbGly II</i> and <i>SbSOS2</i> genes in transgenic yeast under different concentration of NaCl	115
(2) Verification of the expression of the SbGly II and SbSOS2 alleles by reverse transcriptase (RT-PCR) analysis	122
(3) Estimation of the intracellular proline content	124
SUMMARY	132
REFERENCES	140
ADADIC CIMMADV	

LIST OF TABLES

No.	Title	Page
1.	Sequence of the primers used in PCR analysis for the amplification of the <i>SbGly II</i> and <i>SbSOS2</i> genes	60
2.	Sequence similarity of the full length <i>SbGly II</i> with orthologous <i>Gly II</i> gene sequences using NCBI-BLASN	92
3.	Sequence similarity of full length <i>SbSOS2</i> with orthologous <i>SbSOS2</i> gene sequences using NCBI-BLASN	92
4.	Primary structure analysis of the SbGly II protein	107
5.	Primary structure analysis of the SbSOS2 protein sequence	108
6.	The mean values of the growth rate of transgenic yeasts harboring the $SbGlyII$ gene and controls (negative and positive) under salt stress measured at OD_{600}	117
7.	The mean values of the growth rate of transgenic yeasts harboring $SbSOS2$ gene and controls (negative and positive) under salt stress measured at OD_{600}	118
8.	The mean values (OD ₅₂₀) of the proline in the SbGly II transgenics and controls yeasts under different concentrations of salt (NaCl)	127
9.	The mean values (OD_{520}) of the proline in the SbSOS2 transgenics and controls yeasts under different concentrations of salt (NaCl)	128

LIST OF FIGURES

No.	Title	Page
1.	The pGEM®-T Vector Map	63
2.	Map of the pYES2 expression vector	71
3.	Standard curve of L-proline	82
4.	(a)The total RNA isolated from Egyptian sorghum cv. R3 plants under stress of 200 mM NaCl (1 and 2). M; 1kb DNA ladder marker, (b) The PCR amplification of the <i>SbGly II</i> (left) and <i>SOS2</i> (right). M; 1kb DNA	
5.	ladder marker	87
6.	GAL Restriction enzyme digestion using <i>EcoRI</i> and <i>NotI</i> for the clone harboring the <i>SbGly II</i> gene and <i>Hind III</i> and <i>SacI</i> for the clone harboring the <i>SbSOS2</i> gene. M; 1kb DNA ladder marker	88 90
7.	The nucleotides and amino acids sequences of the <i>SbGly II</i> gene (a) and <i>SbSOS2</i> gene (b)	93
8.	Submission of a full length SbGly II sequences in the GenBank at NCBI.	94
9.	Submission of a full length SbSOS2 sequences in the GenBank at NCBI	95
10.	Sequence alignment of the Egyptian SbGly II predicted protein sequence with protein sequences from Sorghum bicolor (XP_002462665.1), Zea mays (ACG33932.1), Brassica juncea (AAO26580.1), Arabidopsis thaliana (NP_563760.1) and Oryza sativa (AAL14249.1).	100
11.	Sequence alignment of the Egyptian <i>SbSOS2</i> predicted protein sequence with g protein sequences from	-

	Sorghum bicolor (XP_002438654.1), Zea mays (NP_001333781.1), Triticum aestivum (AJR22382.1)	
	and Oryza sativa (ACD76985.1)	101
12.	Phylogenetic trees (a) of the Gly II proteins from a total of 5 plant species. (b) Of the <i>SOS2</i> proteins from a total of 4 plant species.	104
13.	Secondary structure prediction of the <i>Sbgly II</i> protein showing the position and length of alpha helices (h), extended strands (e) and random coils (c)	109
14.	Secondary structure prediction of the <i>SbSOS2</i> protein showing the position and length of alpha helices (h), extended strands (e) and random coils (c)	110
15.	Digestion of SbGlyII-pGEM-T and SbSOS2-pGEM-T recombinant plasmids. The <i>GlyII</i> gene (1011 bp), the <i>SbSOS2</i> gene (1350 bp) and pYES2 plasmid (5900bp) and. M; 1kb DNA ladder marker	111
16.	Verification of SbGly II-pYES2 and SbSOS2-pYES2 constructs using restriction enzymes. The inserts <i>SbGly II</i> (a) <i>and SbSOS2</i> (b) from recombinant pYES2 plasmids. M; 1kb DNA ladder marker	112
17.	Yeast transformation with recombinant pYES2	114
18.	The Colony PCR amplification of the <i>SbGly II</i> gene (1011 bp), and <i>SbSOS2</i> gene (1350bp). (M) 1kb DNA ladder as a marker. Lanes (C) the amplified genes from yeast colony., (+ve) positive controls and (-ve) negative controls	115
19.	Effects of salt stress on the growth rate of yeast. NaCl concentrations of 0M, 1.7M, 1.8M, 1.9M, 2.0M, 2.1M, 2.2M and 2.3M, respectively. (-ve) non transformed yeast. (pYES): yeast cells transformed with the pYES2 empty vector and <i>Gly II</i> yeast cells harboring the <i>SbGly II</i> gene.	120
20.	Effects of salt stress on the growth rate of yeast. NaCl concentrations of 0M, 1.7M, 1.8M, 1.9M, 2.0M, 2.1M, 2.2M and 2.3M, respectively. (-ve) non transformed yeast. (pYES): yeast cells transformed with the pYES2 empty vector and <i>SOS2</i> yeast cells harboring	

	the SbSOS2 gene.	121
21.	Histogram illustrating means of the measurements of the yeast growth rate of the yeast cells harboring the $SbGly\ II$ gene as compared to controls at OD_{600} under salt stress	121
22.	Histogram illustrating means of the measurements of the yeast growth rate of the yeast cells harboring the $SbSOS2$ gene as compared to controls at OD_{600} under salt stress.	122
23.	The RT-PCR analysis of the (a) <i>SbGly II</i> and (B) <i>SbSOS2</i> genes revealing the amplification of the bands at the expected size (1011bp, and 1350 bp, respectively) at 1.9 and 2.3 M, respectively. (-ve)	122
	negative control M; 1kb DNA ladder marker	123

INTRODUTION

Overcoming food shortage through self-reliance and sustainable agriculture has gained increased attention all over the world. However, abiotic stresses such as water deficit, increased salinity of soil, and extreme temperatures, cause 50 % reduction in crop yield worldwide (Bray *et al.*, 2000; Tuberosa and Salvi, 2006 and Turan *et al.*, 2012).

Drought and salinity are considered the major constraints which affect crop yield and have adverse effects on food security and socioeconomic conditions. Soil salinity is becoming acute problem day by day as it represents a major abiotic stress, limiting growth and productivity of plants in many areas of the world. It was estimated that salt stress adversely affects almost 20 % of cultivated and half of irrigated land (Brini et al., 2007 and Tavakkoli et al., 2011). Salinity stress, in addition of being considered as a hyperosmotic stress that causes various physiological changes, it is also considered as a hyperionic stress (Gupta and Huang, 2014). High concentrations of salts in plants can cause an imbalance between production and scavenging of reactive oxygen species (ROS) such as superoxide anion, hydrogen peroxide (H₂O₂) and the hydroxyl radicals (OH⁻) particularly in chloroplasts and mitochondria. Thus, causing hyperosmotic stress that can lead to oxidative damage (Zhu, 2001 and Mittler et al., 2004).

The glyoxalase pathway system has been recognized as one of the key detoxification mechanisms for the osmotic aspect of salt