

By

Motaz Salah Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

By Motaz Salah Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Ashraf EL-Zanaty

Prof. Dr. Tamer EL-Afandy

Professor of Reinforced concrete
Civil Engineering
Faculty of Engineering, Cairo University

Prof. Dr. Tamer EL-Afandy

Prof. Dr. Tamer EL-Afandy

Professor of Reinforced concrete
Housing and Building National Research
Center

By Motaz Salah Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee
Prof. Dr. Ashraf EL-Zanaty, Thesis Main Advisor
Prof. Dr. Tamer EL-Afandy, Advisor Housing and building national research center
Prof. Dr. Sherif Ahmed Mourad, Internal Examiner
Prof. Dr. Hadad Said Hadad, External Examiner Housing and building national research center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

By Motaz Salah Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the

Examining Committee

Prof. Dr. Ashraf EL-Zanaty, Thesis Main Advisor

Prof. Dr. Tamer EL-Afandy, Advisor Housing and building national research center

Prof. Dr. Sherif Ahmed Mourad, Internal Examiner

Prof. Dr. Hadad Said Hadad, External Examiner

Housing and building national research center

Held Said Hodel

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Motaz Salah Sayed

Date of Birth: 1/12/1992 **Nationality:** Egyptian

E-mail: motazsalahgb92@gmail.com

Phone: 01211732992

Address: Fifth settlement-New Cairo

Registration Date: 1/10/2014 **Awarding Date:** //2018

Degree: Master of Science **Department:** Structural Engineering

Supervisors:

Prof. Ashraf El-Zanaty Prof. Tamer EL-Afandy

Housing and building national research center

Examiners:

Porf. Ashraf El-Zanaty (Thesis main advisor)

Prof. Tamer EL-Afandy (Advisor)

Housing and building national research center Prof. Sherif Mourad (Internal examiner) Prof. Hadad Saed Hadad (External examiner) Housing and building national research center

Title of Thesis:

BEHAVIOUR OF CONCRETE ENCASED STEEL COLUMNS UNDER AXIAL CONCENTRIC LOAD

Key Words:

Composite Column, Concrete encased column, Structural Steel, Confinement, Shear Connector.

Summary:

This research investigates behavior of concrete encased steel column (CESC) subjected to axial loads, in order to study the effect of specific parameters such as shear connectors, concrete compressive strength, confinement and buckling length of columns on the behavior of CESC. This research studies the effect of presence, different type, amount and position of shear connectors at the interface between the concrete part and steel part of the column. An analytical model based on the stress-strain characteristics of concrete under triaxial state of stresses is proposed to predict the deformational behavior as well as the ultimate capacity of rectangular CESC columns.

Engineer's Name:

Motaz Salah Sayed

Date of Birth: **Nationality:**

1/12/1992 Egyptian

E-mail:

motazsalahgb92@gmail.com

Phone:

01211732992

Address:

Fifth settlement-New Cairo

Registration Date: Awarding Date:

1/10/2014 / /2018

Degree:

Master of Science

Department:

Structural Engineering

Supervisors:

Prof. Ashraf El-Zanaty Prof. Tamer EL-Afandy

Housing and building national research center

Examiners:

Porf. Ashraf El-Zanaty (Thesis main advisor)

Prof. Tamer EL-Afandy (Advisor)

Housing and building national research center Prof. Sherif Mourad (Internal examiner)

Prof. Hadad Saed Hadad (External examiner) Housing and building national research center

Hadad sort Hod

Title of Thesis:

BEHAVIOUR OF CONCRETE ENCASED STEEL COLUMNS UNDER AXIAL CONCENTRIC LOAD

Key Words:

Composite Column, Concrete encased column, Structural Steel, Confinement, Shear Connector.

Summary:

This research investigates behavior of concrete encased steel column (CESC) subjected to axial loads, in order to study the effect of specific parameters such as shear connectors, concrete compressive strength, confinement and buckling length of columns on the behavior of CESC. This research studies the effect of presence, different type, amount and position of shear connectors at the interface between the concrete part and steel part of the column. An analytical model based on the stress-strain characteristics of concrete under triaxial state of stresses is proposed to predict the deformational behavior as well as the ultimate capacity of rectangular CESC columns.

Acknowledgments

The author wishes to express his sincere appreciation and gratitude to **Prof**. **Dr. Ashraf El- Zanaty**, Professor of RC Structures, Cairo University, for supporting our research.

The author is also indebted with great favor to **Prof. Dr. Tamer EL-Afandy**, Professor of RC Structures, Housing and Building National Research Center, for his continuous guidance, valuable discussion, and cooperation throughout this research.

Special thanks are due to **Engineer Mohamed Magdy**, Engineer of RC Structures, Housing and Building National Research Center, for being a great partner in our researches.

The author wishes also to thank both **Dr. Shady Nabil** and **Engineer Eslam Mousa** for their support and guide through the different phases of the research.

Last, but not least, the author thanks his family for their encouragement and prayers.

Dedication

I dedicate this thesis to the soul of my beloved friend Salah El-Din Alaa EL-Sherif may GOD bless his soul. I also dedicate it to those who never give up on Palestine.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in references section.

Engineer Name: Motaz Salah	Date: 22/9/2018
Signature:	

Table of Contents

ABSTRACT	V
CHAPTER 1: INTRODUCTION	1
1.1. General	1
1.2. OBJECTIVE AND SCOPE	2
1.2.1. Thesis outline	
CHAPTER 2 : LITERATURE REVIEW	3
2.1. Introduction	3
2.2. Composite Structures	3
2.3. Behavior of Composite Column	4
2.4. EFFECT OF CONFINEMENT ON THE BEHAVIOR OF COMPOSITE COLUMNS	7
2.4.1. Confinement in Reinforced Concrete Columns	12
2.4.2. Confinement in Composite Columns	14
2.5. LOAD TRANSFER IN COMPOSITE COLUMN	7
2.5. International Codes Design Procedures Considering Encased	COMPOSITE
Column	18
CHAPTER 3: THE EXPERIMENTAL WORK	19
3.1. General.	24
3.2. TEST SPECIMENS	24
3.3. FABRICATION OF TEST SPECIMENS	
3.3.1. Concrete Casting	
3.3.2. Strain Gauges	
3.4. Material Properties	
3.4.1. Concrete	
3.4.2. Steel Reinforcement	
3.5. TEST SET UP.	
3.6.Instrumentation	
CHAPTER 4: RESULT OF THE EXPREMENTAL PROGRAM	
4.1. General.	
4.2. Behavior of Specimens and Failure Modes	
4.3. ENERGY DISSIPATION AND DUCTILITY	
4.4. DISCUSSION OF RESULTS	
4.5.1. Effect of Composite Column	
4.5.2. Presence of Shear Connector	
4.5.3. Different Kinds of Shear Connector4.5.4. Number of Shear Connector	
4.5.5. Confinement Pattern	
4.5.6. Position of Shear Connector	
4.5.7. Concrete Compressive Strength	
4.5.8. Buckling Length	

CHAPTER 5: ANALYTICAL STUDY	102
5.1. General	107
5.2. STRESS STRAIN RELATIONSHIP	107
5.3. ENERGY DISSIPATION AND DUCTILITY	110
CHAPTER 6: SUMMARY AND CONCLUSIONS	110
6.1. SUMMARY	110
6.2. Conclusions	
6.3. Suggestions for future work.	112
REFERENCES	113

List of Tables

Table 3. 1 Details of the tested specimens	22
Table 3. 2 Concrete compressive strength for the tested specimens	
Table 4. 1 Maximum Load and Measured Strain in Longitudinal Direction	
Table 4. 2 Effect of Composite action	
Table 4. 3 Effect of Presence of Shear Connectors	
Table 4. 4 Effect of different types of shear connectors	
Table 4. 5 Effect of amount of shear connectors	
Table 4. 6 Effect of Confinement.	
Table 4. 7 Effect of Shear Connector Position.	
Table 4. 8 Effect of Concrete Compressive Strength	60
Table 4. 9 Effect of Buckling Length	
Table 5. 1 Compression between different codes and laboratory results	
List of Bar Charts	
List of Bar Charts Bar Chart 4.1 Effect of Composite action	87
Bar Chart 4.1 Effect of Composite action.	88
Bar Chart 4.1 Effect of Composite action	88 89
Bar Chart 4.1 Effect of Composite action Bar Chart 4.2 Effect of different types of shear connectors Bar Chart 4.3 Effect of Position of Shear Connectors Bar Chart 4.4 Effect of Number of shear connectors Bar Chart 4.5 Effect of Confinement	88 90 91
Bar Chart 4.1 Effect of Composite action. Bar Chart 4.2 Effect of different types of shear connectors Bar Chart 4.3 Effect of Position of Shear Connectors Bar Chart 4.4 Effect of Number of shear connectors.	88 90 91
Bar Chart 4.1 Effect of Composite action Bar Chart 4.2 Effect of different types of shear connectors Bar Chart 4.3 Effect of Position of Shear Connectors Bar Chart 4.4 Effect of Number of shear connectors Bar Chart 4.5 Effect of Confinement	88 90 91

List of Figures

Figure 2.1 Composite Slaps	4
Figure 2.2 Different Main Types of Composite Beams	4
Figure 2.3 Different Main Types of Composite Columns.	4
Figure 2.4 Stress strain Model Proposed by Mander et al. 1988	8
Figure 2.5 Stress strain Models Proposed by Mander and El-Afandy et al. versus	the
experimental results 2002	9
Figure 2.6 The area of concrete confined by different elements of lateral ties, structure	ral
steel section.	. 10
Figure 2.7 load transfer scenarios considering encased composite columns	. 12
Figure 2.8 European strut curve	
Figure 3.1 Reinforcement and Details of the tested RC column.	23
Figure 3.2 Reinforcement and Details of the tested Equivalent RCcolumn	. 23
Figure 3.3 Reinforcement and Details of the tested Composite column.	. 24
Figure 3.4 Structural steel details for different combinations of welded studs used as	
shear connectors.	
Figure 3.5 Structural steel details for different types of shear connectors	
Figure 3.6 Details of composite column with internal ties 10/m'- (CC-INT-10)	. 25
Figure 3. 7 Details of composite column (CC-2300mm) with welded Angles shear	
Connectors.	
Figure 3. 8 Casting box for five column	. 27
Figure 3. 9 Strain gauges attached to the reinforcement bars, transverse steel and	
structural steel details of the CESC specimens.	
Figure 3. 10 Stress-Strain curve for mild steel 8mm diameter	
Figure 3. 11Stress-Strain curve for high strength steel 12mm diameter	
Figure 3. 12 Stress-Strain curve for high strength steel 22mm diameter	
Figure 3. 13 Stress-Strain curve for mild steel of IPE 140	
Figure 3. 14 Vertical instruments used to measure the response of the specimens ver	
the applied load	
Figure 3. 15 Testing machine set-up.	
Figure 3. 16 Details of Strain gauges attached to the reinforcement bars, transverse st	
1	. 38
Figure 3. 17 Rebars and structural steel specimens with a strain gauge attached to calculate its properties	20
Figure 3. 18 Testing rebars specimens with a strain gauge attached to calculate its	. 30
properties	20
Figure 3. 19 Testing structural steel specimens with a strain gauge attached to calcula	
its properties.	
Figure 3. 20 Welding process for shear connector to the structural steel members	
Figure 3.21 CC-INT-10 Specimens Casting	
Figure 3.22 CC-6-AG-W – CC-8-ST-FL Specimens Casting	
Figure 3. 23 CC-0-SH.C Specimens Casting	
Figure 3. 24 CC-2300mm Specimen Casting	
Figure 3. 25 Steel Head	
1 15010 J. 4J 51001 11000	. ┰∠

Figure 3. 26 Test Setup and attached instruments.	43
Figure 3. 27 Test Setup and attached instruments-2	48
Figure 4. 1 Prediction of Ductility	62
Figure 4. 2 Load-Longitudinal Strain Relationship for specimen – RC-Control	62
Figure 4. 3 Load-Longitudinal Strain Relationship for Steel Rebars – RC-Control	63
Figure 4. 4 Load-Buckling Relationship for specimen - RC-Control	63
Figure 4. 5 Load-Buckling Relationship for specimen–RC-Control	64
Figure 4. 6 Load-Longitudinal Strain Relationship for specimen – RC-Eq	64
Figure 4. 7 Load-Longitudinal Strain Relationship for Steel Rebars – RC-Eq	65
Figure 4. 8 Load-Transverse Strain Relationship for specimen—RC-Eq	65
Figure 4. 9 Strain Relationship for specimens on different directions (Longitudinal	and
transverse) - RC-Eq	
Figure 4. 10 Load-Longitudinal Strain Relationship for specimen – CC-8-ST-FL	66
Figure 4. 11 Load-Longitudinal Strain Relationship for Steel Rebars – CC-8-ST-FL	67
Figure 4. 12 Load-Longitudinal Strain Relationship for SS. CC-8-ST-FL	67
Figure 4. 13 Load-Transverse Strain Relationship for specimen CC-8-ST-FL	68
Figure 4. 14 Load – Strain Relationship for specimens on different directions	
(Longitudinal and transverse) - CC-8-STFL	68
Figure 4. 15 Load-Longitudinal Strain Relationship for specimen – CC-4-ST-FL	69
Figure 4. 16 Load-Longitudinal Strain Relationship for Steel Rebars- CC-4-ST-FL	69
Figure 4. 17 Load-Buckling Relationship for specimen - CC-4-ST-FL	70
Figure 4. 18 Load-Transverse Strain Relationship for specimen - CC-4-ST-FL	70
Figure 4. 19 Strain Relationship for specimens on different directions	
(Longitudinal and transverse) - CC-4-ST-FL	71
Figure 4. 20 Load-Longitudinal Strain Relationship for specimen – CC-8-ST-W	
Figure 4. 21 Load-Buckling Relationship for specimen – CC-8-ST-W	
Figure 4. 22 Load-Longitudinal Strain Relationship for Steel Rebars – CC-8-ST-W	
Figure 4. 23 Load-Longitudinal Strain Relationship for SS. CC-8-ST-W	73
Figure 4. 24 Load – Strain Relationship for specimens on different directions	
(Longitudinal and transverse) - CC-8-ST-W	
Figure 4. 25 Load-Longitudinal Strain Relationship for specimen CC-6-AG-W	
Figure 4. 26 Load-Transverse Strain Relationship for specimen CC-6-AG-W	
Figure 4. 27 Load-Longitudinal Strain Relationship for SS. CC-6-AG-W	
Figure 4. 28 Load-Longitudinal Strain Relationship for Steel Rebars- CC-6-AG-W	75
Figure 4. 29 Load – Strain Relationship for specimens on different directions	
(Longitudinal and transverse) - CC-6-AG-W	
Figure 4. 30 Load-Longitudinal Strain Relationship for specimen – CC-4-H-W	
Figure 4. 31 Load-Longitudinal Strain Relationship for Steel Rebars – CC-4-H-W	
Figure 4. 32 Load-Buckling Relationship for specimen - CC-4-H-W	
Figure 4. 33 Load-Transverse Strain Relationship for specimen—CC-4-H-W	78
Figure 4. 34 Load – Strain Relationship for specimens on different directions	_
(Longitudinal and transverse) - CC-4-H-W	
Figure 4. 35 Load-Longitudinal Strain Relationship for specimen – CC-0-SH.C	
Figure 4. 36 Load-Longitudinal Strain Relationship for specimen - CC-INT-10	
Figure 4. 37 Load-Longitudinal Strain Relationship for SS CC-INT-10	80

Figure 4. 38 Load-Buckling Relationship for specimen - CC-INT-10	80
Figure 4. 39 Load-Longitudinal Strain Relationship for Steel Rebars- CC-INT-10	81
Figure 4. 40 Load-Transverse Strain Relationship for specimen - CC-INT-10	81
Figure 4. 41 Load-Longitudinal Strain Relationship for specimen – CC-2300mm	82
Figure 4. 42 Load-Longitudinal Strain Relationship for Steel Rebar – CC-2300mm.	82
Figure 4. 43 Load-Transverse Strain Relationship for specimen - CC-2300mm	83
Figure 4. 44 Load – Strain Relationship for specimens on different directions	
(Longitudinal and transverse) - CC-2300mm	83
Figure 4. 45 Load-Buckling Relationship for specimen – CC-2300mm	84
Figure 4. 46 Load-Longitudinal Strain Relationship for specimen - CC-Fcu-57	
Figure 4. 47 Load-Longitudinal Strain Relationship for Steel Rebars- CC-Fcu-57	85
Figure 4.48 Strain Relationship for specimens on different directions	
(Longitudinal and transverse) - CC-Fcu-57	85
Figure 4. 49 Load-Transverse Strain Relationship for specimen - CC-Fcu-57	86
Figure 4. 50 Load-Longitudinal Strain Relationship for SS. SS-IPE 140	86
Figure 4. 51 Effect of Composite action	87
Figure 4. 52 Effect of Different Types of Shear Connector	88
Figure 4. 53 Effect of Position of Shear Connector	89
Figure 4. 54 Effect of Number of Shear Connector	90
Figure 4. 54 Effect of Confinement	91
Figure 4. 55 Effect of Concrete Compressive Strength	92
Figure 4. 56 Effect of Buckling Length	93
Figure 4. 58 Failure of RCControl	94
Figure 4. 59 Failure of RCEq	94
Figure 4. 60 Failure of Structural Steel Column	95
Figure 4. 61 Failure of CC-0-SH.C.	
Figure 4. 62 Failure of CC-6-AG-W	96
Figure 4. 63 Failure of CC-8-ST-FL	
Figure 4. 64 Failure of CC-4-ST-FL	
Figure 4. 65 Failue of CC-8-ST-W	99
Figure 4. 66 Failure of CC-4-H-W	100
Figure 4. 57 Failure of CC-10-INT.	
Figure 4. 58 Failure of CC-2300mm	101
Figure 5. 1 Confining strength determination from lateral confining stress for rectan	gular
section (Mander)	
Figure 5. 2 Stress-Strain curve of both Confined and Un-Confined concrete calculat	
Mander model VS El-Afandy modified model	104
Figure 5. 3 Confined area details in case of CESC.	
Figure 5. 4 Test results of the RC control specimen vs the analytical models	105
Figure 5. 5 Test results of the CC specimens vs the analytical models	
Figure 5. 6 Test results of the CC-Fcu-57 specimen vs the analytical models	
Figure 5. 7 Test results of the CC-2300mm specimen vs the analytical models	
Figure 5. 8 Test results of the CC-INT-10 specimen vs the analytical models	107