

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Infrared Optical Sensor

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

by

Raghi Samir Khalil George Elshamy

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Ain Shams University, 2017

Supervised By

Prof. Diaa Abdel Maguid Khalil

Assoc. Prof. Mohamed Abdel Azim Abdel Hamid Swillam

Cairo - (2018)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics and Communications

Infrared Optical Sensor

by

Raghi Samir Khalil George Elshamy

Bachelor of ScienceinElectrical Engineering
(Electronics Engineering and Electrical Communications)
Faculty of Engineering, Ain Shams University, 2013

Examiners' Committee

Name and Affiliation	Signature
Prof. Amr Mohamed Shaarawi	
Engineering Physics and Mathmatics	
School of Science and Engineering, The American University in Cairo	
Prof. Tarek Abdel Azim Mohamed Ramadan	
Electronics Engineering and Electrical Communications	
Faculty of Engineering, Ain Shams University	
Assoc. Prof. Mohamed Abdel Azim Abdel Hamid Swillam	
Engineering Physics and Mathmatics	
School of Science and Engineering, The American University in Cairo	
Prof. Diaa Abdel-Maguid Mohamed Khalil	
Electronics Engineering and Electrical Communications	
Faculty of Engineering, Ain Shams University	

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name: Raghi Samir Khalil George Elshamy	y
Signature	e
	•

Researcher Data

Name : Raghi Samir Khalil George Elshamy

Date of birth : 7/1/1991

Place of birth : Cairo, Egypt

Last academic degree : B.Sc. in Electrical Engineering

Field of specialization: Electronics Engineering and Electrical Communications

University issued the degree : Ain Shams University

Date of issued degree : June 2013

Current job: Research assistant at Physics Department, The American University in Cairo.

Thesis Summary

This thesis study integrated gas sensing in the mid infrared (MIR) range of wavelength for on chip applications. For this purpose a detailed sensitivity analysis of different waveguides in gaseous medium in the MIR have been carried out including both plasmonic and dielectric waveguides in order to determine a high sensitivity and low loss sensor. Then, MIR waveguide platforms have been proposed to serve as interconnects and to build different photonic devices. Finally, two high performance refractive index gas sensors working near the absorption fingerprints of many gases have been proposed. Intensity interrogation method is used as it offers compact and cheap sensors. The first sensor use suspended silicon waveguide and the second uses metal insulator plasmonic waveguide and both are in a Mach-Zehnder Interferometer (MZI) configuration.

The thesis is divided into six chapters as listed below:

Chapter 1:

This chapter gives a brief introduction of the motivation, objectives, major contributions and organization of the thesis.

Chapter 2:

This chapter presents a review of the chemical and biological optical sensing with focus on MIR refractive index gas sensing. In the beginning the different optical sensing techniques that are used in the chemical and biological detection are discussed. Next, we focus on the gas sensing techniques and the advantage of working in the MIR range along with the progress that have been done in this range. Then, the advantages and the basic concept of refractive index sensors are presented where the well-known MZI sensor performance parameters are derived. Finally, recently proposed refractive index gas sensors are discussed.

Chapter 3:

This chapter proposes two waveguide platforms for the mid infrared region. Firstly a rigorous and detailed modal analysis of silicon-on-sapphire (SOS) strip waveguide in its MIR transparency region is presented. The waveguide dimensions that can support optical modes in the MIR region are presented and the effect of these dimensions on the effective index is studied. Next the modal analysis of hybrid plasmonic waveguides is presented where the metal is replaced by doped silicon. The dependence of the modal area and the propagation distance of the waveguides on the excitation wavelength, as well as the dimensions are investigated. The

hybrid structures were also investigated around the doped silicon resonance wavelength to examine their ability to support slow and fast light or behave as a negative index material.

Chapter 4:

This chapter presents a rigorous sensitivity analysis of many waveguides for MIR refractive index gas sensors. Real 2D index profile waveguides including plasmonic and dielectric were analyzed using full vectorial finite difference frequency domain solver. The studied plasmonic waveguides were using doped silicon as they offer many advantages over the metals in the MIR region. In addition an asymmetric hybrid waveguide using silver is proposed as it has many advantages for bimodal MZI. The waveguides sensitivity and losses are calculated for different waveguide dimensions, wavelengths and doping concentrations.

Chapter 5:

This chapter proposes two refractive index gas sensors working in the MIR range near the absorption fingerprints of many gases. The first sensor is waveguide coupled MZI based on suspended silicon waveguide that showed to reach high waveguide sensitivity with almost zero intrinsic mode loss. The second sensor is free space coupled vertically stacked plasmonic MZI. Intensity interrogation method is used as it offers compact and cheap sensors. FDTD simulations is used in the design and optimization of the sensors. Finally, recently published refractive index sensors and their performance were discussed and compared with our proposed sensors.

Chapter 6:

This chapter gives the conclusion of the thesis and introduces several recommendations and suggestions for the future work.

Key words:

Silicon photonics sensors, Plasmonic sensors, Gas sensor, Mid infrared, Lab on chip, Doped silicon plasmonic waveguides, Refractive index sensors, Hybrid plasmonic waveguides, Mach Zehnder Interferometer, Suspended silicon, Silicon on sapphire, long range plasmonic waveguides, all dielectric plasmonic waveguides, Slow and fast light, bimodal plasmonic MZI.

Contents

Conten	ts		xiii		
List of	of Figuresxv				
List of	st of Tablesxx				
Chapter	r 1: In	troduction	1		
1.1	Introduction				
1.2	Mo	otivation and Objectives	2		
1.3	Ma	in Contributions	3		
1.4	Org	ganization of the Thesis	4		
Chapter	r 2: Ba	ackground and Literature Review	7		
2.1	Int	roduction	7		
2.2	Ch	emical and Biological Optical Sensing	7		
2.3	3 Integrated Mid Infrared Gas Sensing		10		
2.3	2.3.1 Gas Sensing Techniques		10		
2.3	3.2	Integrated Mid Infrared Sensing	12		
2.4	Inte	egrated Refractive Index Sensing	16		
2.5	Co	nclusion	20		
Chapter	: 3: M	lid Infrared Waveguide Platforms	21		
3.1	Int	roduction	21		
3.2	The	eoretical background	23		
3.2	2.1	Slab waveguide	23		
3.2	2.2	SPP and Doped Silicon Plasmonics	24		
3.2	2.3	IMI and MIM Analysis	26		
3.3	Sili	icon-on-Sapphire (SOS) Waveguide	29		
3.3	3.1	Dispersion Analysis	29		
3.3	3.2	Discussion	35		
3.4	Lo	ng Range All-Dielectric Plasmonic Waveguide	36		

3.4	1.1	Modal Analysis of Symmetric Hybrid plasmonic waveguide (HPW)	36
3.4.2 Mode Analysis of Hybrid Slot Waveguide		Mode Analysis of Hybrid Slot Waveguide	41
3.4	3.4.3 Discussion		42
3.5	Cor	nclusion	44
Chapter	4: W	aveguides Sensitivity Analysis for Mid-Infrared Gas Sensing	46
4.1	Intr	oduction	46
4.2	The	oretical background	48
4.2	2.1	Slab waveguide	48
4.2	2.2	IMI and MIM Analysis	49
4.3	Stu	died Structures	51
4.4	Sen	sitivity Analysis	52
4.4	l.1	Suspended waveguide	52
4.4	1.2	Slot Waveguide	58
4.4	1.3	Symmetric Hybrid Waveguide	61
4.5	Dis	cussion	70
4.6	Asy	mmetric hybrid waveguide	72
4.7	Cor	nclusion	76
Chapter	5: M	id Infrared Integrated MZI Gas Sensors	77
5.1	5.1 Introduction		77
5.2	Ver	tical Plasmonic Mach Zehnder Interferometer	79
5.2	2.1	Structure and MZI Analysis	79
5.2	2.2	MI waveguide performance	81
5.2	2.3	Input and Output Coupling Simulations	87
5.2	2.4	MZI Sensor Design and Optimization	89
5.3	MZ	I Sensor Using Suspended Silicon Waveguide	95
5.3.1 MZI Senso		MZI Sensor Design and Analysis	95
5.3	3.2	FDTD Simulation Results	99
5.4	Dis	cussion	102
<i>5 5</i>	C	aducion	104

Chapter 6: Conclusion and Future Work					
105	Conclusions	6.1			
106	Future Work	6.2			
1	IOGRAPHY	BIBLIO			