Study of Interleukin 6 (IL-6) in Chronic Lymphocytic Leukemia

Thesis

Submitted for the Partial Fulfilment of MD

Degree in Internal Medicine

Presented By Gehad Hamada Fekry

 $(M.B.B.Ch - MSc.\ Internal\ Medicine)$

Under supervision of **Prof.Dr. Essam Abdelwahed Hassan**

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Dr. Emad Abdelmohsen Abdelhady

Assistant Professor of Internal Medicine and Clinical Haematology Faculty of Medicine - Ain Shams University

Dr. Mohamed Tarif Mohamed Hamza

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Hanaa Fathey Abdelsamee

Assistant Professor of Internal Medicine and Clinical Haematology Faculty of Medicine, Ain Shams University

Dr. Mostafa Kamal El-Razzaz

Lecturer of Internal Medicine and Clinical Haematology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Essam Abdelwahed Hassan, Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Emad Abdelmohsen Abdelhady, Assistant Professor of Internal Medicine and Clinical Haematology Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohamed Tarif Mohamed Hamza**, Assistant Professor of Clinical Pathology Faculty of Medicine Ain Shams University, for his great help, active participation and guidance.

I am deeply thankful to **Dr. Hanaa Fathey Abdelsamee,** Assistant Professor of Internal Medicine and
Clinical Haematology Faculty of Medicine, Ain Shams University,
for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Mostafa**Kamal El-Razzaz, Lecturer of Internal Medicine and Clinical
Haematology Faculty of Medicine, Ain Shams University, for his kindness,
supervision and cooperation in this work.

Gehad Hamada Fekry

List of Contents

Title	Page No.	
List of Tables	IV	
List of Figures	VI	
List of Abbreviations	X	
Introduction	1	
Aim of the Work	5	
Review of Literature		
• Chronic Lymphocytic Leukaemia (CLL)	6	
Management	54	
Cytokines	82	
■ Interleukin-6 (IL-6)	96	
Relation Between IL 6 and CLL	104	
Patients and Methods1		
Results	118	
Discussion	142	
Summary	154	
Conclusion	156	
Recommendations	157	
References15		
Arabic Summary		

List of Tables

Table No.	Title Page No.
Table (1):	B-cell chronic lymphoproliferative disorders with leukaemic expression
Table (2):	Inmunophenotype and other markers in B-cell chronic lymphoproliferative disorders 9
Table (3):	The immunophenotype of CLL
Table (4):	CLL score in B-cell disorders
Table (5):	The value of bone marrow trephine
. ,	biopsies in CLL
Table (6):	FISH cytogenetics: biological and clinical
. ,	correlates25
Table (7):	Differences between CLL, SLL, and MBL27
Table (8):	Most important Outcome Predictors in
. ,	CLL32
Table (9):	The clinical stage so of Rai and Binet
Table (10):	Main treatment options for patients with
	CLL not included in trials60
Table (11):	Treatments for younger, fit patients61
Table (12):	Treatments for older, unfit patients65
Table (13):	BTK-targeting agents for CLL therapy69
Table (14):	PI3Kδ-targeting agents for CLL therapy72
Table (15):	Six cytokine families91
Table (16):	Patients' demographic data as regard age
	and sex118
Table (17):	Patients' demographic data as regard
	CBC118
Table (18):	Patients' demographic data as regard LDH, ESR, Uric Acid, B2 microglobulin
	and BM Aspirate (% of lymphocytosis)
Table (19):	Patients' demographic data as regard
14010 (10)	classification (Rai and Binet staging
	systems)

List of Tables cont...

Table No.	Title Page No.
Table (20):	Patients' demographic data as regard Coomb"s test (direct), B symptoms, cyto 17P deletion, CD 38 and viral markers122
Table (21):	Patients' demographic data as regard out come
Table (22):	Comparison between patients and controls as regard serum IL-6 level124
Table (23):	Comparison between patient group (pre treatment) and patient group (post treatment) as regard serum IL-6 level125
Table (24):	Comparison between CR patients as regard serum IL-6 level pre and post treatment
Table (25):	Comparison between PR patients as regard serum IL-6 level pre and post treatment.
Table (26):	Correlation between IL 6 level and other prognostic factors (age, WBC, B2 microglobulin, LDH, ESR, Uric Acid and
Table (27):	BM Aspirate (% of lymphocytes)
Table (28):	Comparison between Non response, partial response and complete response patients' WBC, LDH, B2 microglobulin, Binet staging system, Rai staging system, cyto 17 p deletion CD 38 and IL 6

List of Figures

Fig. No.	Title Page N	0.
Figure (1): Figure (2): Figure (3):	Blood film of a typical case of CLL. Blood filmfroma case of CLL/PL FISH analysis with a 13q14 probe showing missing red dots in several cells denoting 13q deletion; all the cells are disomic for chromosome 12 (normal pattern)	15
Figure (4):	FISH analysis with a <i>TP53</i> probe (red) and a control 17 probe	
Figure (5):	Flow cytometry analysis of peripheral blood samples from a case of follicular lymphoma with lymphocytosis (score 0) compared with a case of CLL (score 5) using the antibodies listed in Table 3	
Figure (6):	Low magnification of a trephine biopsy from a patient with CLL and heavy (packed) lymphocytic infiltration	
Figure (7):	Higher magnification of the same case as showing scanty fat spaces and diffuse	
Figure (8):	lymphocytic infiltration Interstitial lymphocytic infiltration in a case of early CLL with preserved	
Figure (9):	haemopoiesis and abundant fat spaces Nodular pattern of infiltration in CLL, early in the disease	
Figure (10):	Diffuse infiltration in the bone marrow in a patient with CLL, a large spleen and thrombocytopenia	
Figure (11):	Blood film of a patient with Richter's syndrome with circulating large blast cells that were positive for surface membrane immunoglobulin	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (12):	CLL patients survival over the (Hospital Clinic Barcelona)	
Figure (13):	Binet "lymphoid" areas	
Figure (14):	Most immune system cytokines	
O	autocrine and/or paracrine action	
	exhibit endocrine action	86
Figure (15):	Functional groups of selected cytol	kines 87
Figure (16):	Overview of the induction and fun	ction of
	cytokines	87
Figure (17):	Cytokine attributes of (a) ple	iotropy,
	redundancy, synergism, antagonis	sm, and
	(b) cascade induction	
Figure (18):	Effector role of Th1 cells	
Figure (19):	Effector role of Th2 cells	
Figure (20):	CD4+ helper T cell	
Figure (21):	Class I cytokine receptors (hematop	
Figure (22):	GM-CSF receptor subfamily (con	•
T! (22)	subunit)	
Figure (23):	IL-6 receptor subfamily (common	
T' (0.4)	subunit)	
Figure (24):	TNF receptors	
Figure (25):	Class II cytokine receptors (interfe	
Figure (26):	Chemokine receptors	
Figure (27):	Immunoglobulin superfamily rece	
Figure (28):	Sandwich ELISA.	
Figure (29):	Patients' demographic data as	
Figure (30):	Binet staging system Patients' demographic data as reg	
rigure (50):	staging system	
Figure (31):	Cyto 17p	
Figure (31):	Patients' demographic data as reg	
1 1gui e (04):	come	
	come	1∠ე

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (33):	Comparison between patient g treatment) and control group so level	erum IL 6
Figure (34):	Comparison between patient greatment) and patient greatment) serum IL 6 level	group (pre oup (post
Figure (35):	Comparison between CR paregard serum IL-6 level pretreatment.	atients as and post
Figure (36):	Comparison between PR paregard serum IL-6 level pretreatment.	atients as and post
Figure (37):	Correlation between IL6 level a	
Figure (38):	Correlation between IL 6 level	
119410 (00)	microglobulin.	
Figure (39):	Correlation between IL 6 level a	
Figure (40):	Correlation between IL 6 leve	
1180110 (10)0	Aspirate (% of lymphocytes)	
Figure (41):	Correlation between IL 6 level	
119010 (11)	acid	
Figure (42):	Correlation IL 6 level and Bin	
118410 (42).	system	
Figure (43):	Correlation between IL 6 leve	
119410 (10).	staging system	
Figure (44):	Correlation between IL 6 level as	
Figure (45):	Correlation between IL 6 lev	
118410 (10)	symptoms.	
Figure (46):	Comparison between Non	
- 18 mi 0 (10)	partial response and Complete	<u>-</u>
	patients' as regard LDH	_

	-	esponse and com as regard B2 mic	nplete response roglobulin138
Lis	st of	Figures	Cont
Fig. No.		Title	Page No.
Figure (48):	partial r	son between a esponse and com as regard CD38	- /
Figure (49):	Comparis	son between nor	
Figure (50):	Comparis	son between nor	
Figure (51):	ROC for	IL-6- pre and po	

Figure (47): Comparison between Non response,

List of Abbreviations

Abb.	Full term
2CD4	2-chlorodeoxyadenosine
	Acute myeloid leukemia
	Ataxia telangiectasia mutated
	B-cell antigen receptor
	B-cell prolymphocytic leukaemia
	Bendamustine with rituximab
	Complete blood count
	Alemtuzumab with FCR
	Cumulative Index Rating Scale
	Chronic lymphocytic leukaemia
	Cytomegalovirus
	Ciliary neurotropic factor
	Complete response
	Complete response incomplete
	Cardiotropin-1
	Direct antiglobulin test
DIC	Disseminated intravascular coagulation
DLBCL	Diffuse large B-cell lymphoma
EBV	Epstein-Barr virus
ELISA	Enzyme-linked immunosorbent assay
ERIC	European Research Initiative on CLL
FC	Fludarabine plus cyclophosphamide
FCR	Fludarabine, cyclophosphamide, rituximab
FISH	Fluorescent in situ hybridization
FR	Fludarabine and rituximab
GVHD	Graft-versus-host disease
GVL	Graft-versus-leukemia

List of Abbreviations cont...

Abb.	Full term
Hb	Hemoglohin
	Hairy cell leukaemia
	Human herpes virus 8
	Haemophilus influenza B
	Immunoglobulin D
	Immunoglobulin variable region heavy chain
	Immunoglobulin M
_	Immunoglobulin variable heavy chain
IL	
	Immune thrombocytopenia
	Lymphocyte doubling time
	Leukemia inhibitory factor
	Lenalidomide + ofatumumab
LR	Lenalidomide + rituximab
MAbs	Monoclonal antibodies
MBL	Monoclonal B-cell lymphocytosis
	Mantle cell lymphoma
MDD	Minimum detectable dose
MDR	Minimally deleted region
MDS	Myelodysplasia
MIRs	microRNAs
MRD	Minimal residual disease
NHL	Non-Hodgkin lymphomas
NPN	Neuropoietin
O.D	Optical density
ORR	Overall response rates
OS	Overall survival
OSM	Oncostatin M
PAR	Pentostatin and rituximab

List of Abbreviations cont...

Abb.	Full term
PCO	. Pentostatin, cyclophosphamide, and ofatumumab
PCR	. Pentostatin + cyclophosphamide + rituximab
PD	. Progressive disease
PFS	. Progression-free survival
PL	. Prolymphocytoid leukaemia
PML	. Progressive multifocal leucoencephalopathy
PR	. Partial response
PRCA	. Pure red cell aplasia
PRL	. Partial response with lymphocytosis
PRn	. Nodular partial response
RANKL	. RANK ligand
RBC	. Red blood cell
RS	. Richter's syndrome
SCT	. Stem cell transplantation
SD	. Stable disease
SLL	. Small lymphocytic lymphoma
SLVL	Splenic lymphoma with circulating villous
	lymphocytes
	. Splenic marginal zone lymphoma
	. Suppressor of cytokine signals
	. Serum separator tube
	. Signal transducer and activator of transcription
	. Serum thymidine kinase
	. Tumor Necrosis Factor
	. Transplant-related mortality
TTF	
	. Vascular endothelial growth factor
	. Vasculargrowth endothelial factor
WBC	. White blood cell

ABSTRACT

Background Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. These malignant B-CLL cells represent over 99% of peripheral blood mononuclear cells (PBMCs) in CLL patients. In case of an aggressive form, the cell number may quickly double and, as a result, the disease may be fatal within a relatively short period of time .Currently several biomarkers are being used as CLL prognosticators, including: elevated protein levels (e.g. TCL-1, ZAP-70, CD38), elevated RNA levels (e.g. CLLU1, LPL, miRNAs), gene mutations (e.g.TP53, SF3B1, BIRC3, NOTCH1) and epigenetic changes. Early reports implicated IL-6 as protumorigenic factor in various human tumors. IL-6 levels increased significantly in serum of CLL patients and correlated with adverse clinical features and short survival.

Aim of the work: **Is** to evaluate IL 6 level in patients with CLL at time of presentation and 6 months after chemotherapy and to study its relevance to disease prognosis.

Patients and Methods: This Study is a cross sectional study that was conducted on 55 patients newly diagnosed with chronic lymphocytic leukemia (CLL) in Clinical Hematology Unit in Ain-Shams University Hospitals in Cairo, Egypt. Result: The initial serum IL 6 level in the patient group (pre-treatment) ranged from 36-91pg/mL (median 57), and in the control group it ranged from 1-2 pg/mL (median 1). The initial serum IL 6 level in patient group (pre-treatment) range from 36-91 pg/mL (median 57), and in patient group (post treatment) range from 1-32 pg/mL (median 2). There are positive correlations between IL6 level and with WBC, B2 microglobulin, LDH, ESR, B symptoms, Uric Acid, BM Aspirate (% of lymphocytes) and Binet and Rai staging system.

Conclusion: Serum IL 6 is a useful poor prognostic marker in newly diagnosed CLL patients, its prognostic value goes with the other known prognostic markers as the lymphocytic count, ESR and LDH.

Key words: CLL; IL 6; Prognostic markers; cytogenetics

Introduction

Thronic lymphocytic leukemia (CLL) is the most common leukemia in adults, accounting for approximately 30 % of all leukemia cases in European and North American countries with an incidence of 3–5 cases per 100,000 (*Talab et al.*, 2013).

CLL is rare under 45 years of age, and its prevalence increases with age. The median age of patients at diagnosis is 70 years and only 10–15% of the patients are diagnosed under 50 years of age. It is characterized by accumulation of non-functional B-cells with a high expression of CD5, CD19, CD20 and CD23 and a low expression of surface immunoglobulins IgM, IgD and CD79a compared to normal B-cells (*Herman et al.*, *2010*).

These malignant B-CLL cells represent over 99% of peripheral blood mononuclear cells (PBMCs) in CLL patients. Approximately 2–5% of CLL patients show a T-cell phenotype, and these patients have a less favorable prognosis than patients with a B-CLL phenotype (*Shackelford et al.*, 2006).

CLL develops through increased proliferation of immature lymphocytes in lymphoid organs, which results from an increased expression of antiapoptotic BCL-2 family proteins (Willimott et al., 2013).

As a result, CLL cells can survive for months (unlike normal cells, which only survive for a few days), thereby

decreasing the number of normal lymphocytes and inducing immunodeficiency (*Chen et al.*, 2008).

In case of an indolent form, the disease does usually not progress to a severe form, and the patient may survive for years without treatment. In case of an aggressive form, the cell number may quickly double and, as a result, the disease may be fatal within a relatively short period of time (*Chiorazzi et al.*, 2005; *Palomba et al.*, 2014).

Currently several biomarkers are being used as CLL prognosticators, including elevated protein levels (e.g. TCL-1, ZAP-70, CD38), elevated RNA levels (e.g. CLLU1, LPL, miRNAs), gene mutations (e.g.TP53, SF3B1, BIRC3, NOTCH1) and epigenetic changes (*Chen et al.*, 2008).

Prognostic serum markers that can be used to predict the survival and response to treatment include increased lactate dehydrogenase (LDH) levels, which are associated with a poor prognosis and a likelihood of progressing to Richter's syndrome, increased thymidine kinase (TK) levels, which are associated with aggressive disease, and unmutated immunoglobulin heavy chain variable region (IGHV) genes, which are associated with a high risk for genomic aberrations (*San Jose et al.*, 2013).

Evaluation of the IGHV mutation status and FISH are among the most reliable molecular tools used in routine diagnostics