STUDY THE EFFECT OF CROSS AND RECIPROCAL CROSS ON PRODUCTIVE PERFORMANCE AND IMMUNE RESPONSE FOR CHICKEN

By

MOHAMED ABDELKAWY ABDELMAHFOZ ELTOHAMY

B.Sc. Agric. Sc. (Poultry Production), Ain Shams Univ. (2014)

A Thesis Submitted in Partial Fulfillment of The Requirement for the Degree of

MASTER OF SCIENCE in

Agriculture Sciences (Poultry Breeding)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

STUDY THE EFFECT OF CROSS AND RECIPROCAL CROSS ON PRODUCTIVE PERFORMANCE AND IMMUNE RESPONSE FOR CHICKEN

By

MOHAMED ABDELKAWY ABDELMAHFOZ ELTOHAMY

B.Sc. Agric. Sc. (Poultry Production), Ain Shams Univ. (2014)

This thesis for M.Sc. degree has been approved by:

Date of examination: 20/6/2018

Dr. Hassan Hassan Younis Prof. of Poultry Breeding, Faculty of Agriculture, Kafr El-Sheikh University. Dr. A.Zein El-Dein Prof. of Poultry Breeding, Faculty of Agriculture, Ain Shams University Dr. Mahmoud Yousef Mahrous Hassanen Associate Prof. of Poultry Breeding, Faculty of Agriculture, Ain Shams University. Dr. Ahmed Galal El-Sayed Gad Prof. of Poultry Breeding, Faculty of Agriculture, Ain Shams University.

STUDY THE EFFECT OF CROSS AND RECIPROCAL CROSS ON PRODUCTIVE PERFORMANCE AND IMMUNE RESPONSE FOR CHICKEN

By

MOHAMED ABDELKAWY ABDELMAHFOZ ELTOHAMY

B.Sc. Agric. Sc. (Poultry Production), Ain Shams Univ. (2014)

Under the supervision of:

Dr. Ahmed Galal El-Sayed Gad

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Mahmoud Yousef Mahrous Hassanen

Associate Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

Dr. Lamiaa Mostafa Abdelmoniem Radwan

Associate Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Mohamed Abdelkawy Abdelmahfoz Eltohamy: Study the Effect of Cross and Reciprocal Cross on Productive Performance and Immune Response for Chicken. Unpublished Ms.c. Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2018.

Effect of cross and reciprocal cross between the Fayoumi and Sinai breed on productive performance traits and immune response measurements under prevailing conditions in Egypt.

The objective of the present study was the Effect of Cross and Reciprocal Cross on Productive Performance and Immune Response for Chicken., The experiment was carried out in the farm of the Faculty of Agriculture - Ain Shams University, At the beginning of the experiment (22) week of age), sixty chickens (30 Fayoumi breed, 30 Sinai breed) It has been divided into all into males and females 12 males and 48 females, and each male with four females, so that the education is appropriate. They were housed in batteries and were then transferred to individual batteries until the end of the experiment (36 weeks of age). It was necessary to compare the two breeds used in the experiment in terms of egg production. The eggs were recorded for 90 days, the Sinai breed is superior and superior in egg production compared to Fayoumi with significant differences with them .and We have been collecting a number of eggs and we have done a good quality egg experiment and we found that the best breed in the weight of eggs, High yolks, Albumin and egg breaking, while Fayoumi was Best in Rising Albumin and Yolk index with a significant difference and At the age of 27 weeks for the parents of the Sinai and Fayoumi chickens, the body measurements of males and females were recorded and We conclude that Sinai is the highest in body weight, Shank length and Tibia length and Keel length and Body depth, while Fayoumi is the highest in Comb length and Wattle length and all differences between them were significant differences With an interaction between the effect of the breed and the effect of sex

.The two breeds were mated and four crosses were produced Male Fayoumi*Female Fayoumi(FF), Male Fayoumi*Female Sinai (FS), Male

Sinai*Female Sinai(SS), Male Sinai*Female Fayoumi(SF) After the second generation hatching, (FF) was the highest in Fertility percent and (SF) was the highest in Hatchability percent of total eggs and Hatchability percent of fertile eggs . and Individual body weight (in grams) was recorded for each sex separately within each breed at 0,1,.. 8 weeks of age. Male Sinai*Female Fayoumi (SF) was found to be the best crosses in terms of weight and vitality and better in food conversion. The most important results obtained that It could be observed that the effect was(SF)cross is the best in fertility, hatchability percent of total eggs, of fertile eggs, body weight and body weight gain .we took the Blood samples were withdrawn from the flock of children and the flock of parents of both sexes male and female. Some of the elements in the blood were measured and analyzed statistically, we conclude that the breed Fayoumi generation parents were the highest in the percentage of Total lipids and Cholesterol and lead significant clear While the hybrid FS cross excelled the generation of sons in Albumin and Phosphorus and Total protein and Calcium and we injected Phytohemagglutinin-P (PHA-P) for the parent stock at 50 wks. And found that the superiority of the Fayoumi breed the Sinai breed in the immune response to injection Phytohemagglutinin-P PHA-P, and this is consistent with results obtained from the estimated Globulin ratio, which showed that the Fayoumi breed more immune response of the Sinai breed.

And the offspring stock at 8 wks. we found that the SF cross response for the injected substance was highest among all groups and in 24 and 48 hours after injected the different was non-significant between them, and this is consistent with results obtained from the estimated Globulin ratio.

In conclusion, SF It is the best cross among all genotypes in Productive Performance and Immune Response.

Then, we can utilize the SF Male Sinai*Female Fayoumi (SF) as a dependent line in development programs under prevailing environmental conditions of Egypt.

Key words: Reciprocal cross, Productive, immune, Fayoumi, Sinai, SF, SS, FS, FF

ACKNOWLEDGMENTS

(In the name of Allah, the Most Merciful, the Most Compassionate)

Firstly, I wish to express my prayerful thanks to ALLAH for everything.

My deepest gratitude and sincere thanks are extended to **Prof. Dr. A. Galal,** professor of poultry breeding, poultry production Department, faculty of Agriculture, Ain Shams University for his supervision, valuable, revising the manuscript and continuous support.

I deeply grateful indebted to **Dr. M.Y. Mahrous**, Assistant Professor, Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his For his brotherhood, writing, supervision, interest, encouragement and revising the manuscript.

I deeply grateful indebted to **Dr. Lamiaa M.A. Radwan,** Assistant professor, Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, encouragement, writing and revising the manuscript.

Special thanks **for Dr. A.M. Abdelmoniem,** lecturer, Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University and **Mrs. H. Hassan,** Demonstrator, Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for helping me during this study in many ways.

Finally, it is of great to take the opportunity to thank every member of my family especially my father and my mother to give me power and encouragement during my academic study.

CONTENTS

	Page
LIST OF TABLES	I
LIST OF FIGURES	II
LIST OF ABBREVIATION	III
INTRODUCTION	1
REVIEW OF LETERATURE	3
1. Overview on Fayoumi chicken strain	3
2. Overview on Sinai chicken strain	5
3. Cross and reciprocal cross in chicken	7
4. Phenotypic characters	8
4.1. Incubation measurements	8
4.1.1. Hatchability	8
4.1.2. Fertility	10
4.2. Productive performance	12
4.2.1. Body weight and Growth rate	12
4.2.2. Body measurements	13
4.2.2.1. Shank and tibia length	13
4.2.2.2. Keel length	16
4.2.2.3. Body depth	17
4.2.2.4. Comb length and Wattle length	18
4.2.3. Egg production traits	19
4.2.3.1. Egg production	19
4.2.3.2. Egg number	20
4.2.3.3. Egg weight	21
4.2.3.4. Egg mass	23
4.2.4. Egg quality measurements	24
4.2.4.1. External egg quality	24
4.2.4.1.1. Egg length	24
4.2.4.1.2. Egg width	24
4.2.4.1.3. Breaking Strength	24

42414E CI : 1	25
4.2.4.1.4.Egg Shape index	25
4.2.4.2. Internal egg quality	27
4.2.4.2.1. Haugh unit and albumen height	27
4.2.4.2.2.Yolk index	29
4.2.4.2.2.1. Yolk diameter	29
4.2.4.2.2.2. Yolk weight	29
4.2.4.2.2.3. Yolk without percentage	29
4.2.4.2.3. Albumen weight and without percentage	30
4.2.4.2.4. Shell index	31
4.2.4.2.4.1. Shell thickness	31
5. Immune system in chicken	32
5.1. Immune system and PHA-P injection in chicken (In vivo cell-mediated immunity assay)	32
5.2. Globulin	33
6. Blood analysis	34
6.1.Total lipids	34
6.2. Cholesterol.	34
6.3. Phosphorus	35
6.4. Calcium	35
6.5 .Albumen.	35
6.6. Total Protein	35
MATERIALS AND METHODS	37
Measurements and observations	37
1. Genetic flocks	37
1.1. Parent stock	37
1.2. Offspring flock	37
2. Measurements and observations	41

2.1. Fertility and Hatchability percentage	41
2.1.1. Parent stock	41
2.2.Body weight	41
2.2.1.Parent stock	41
2.2.2.Offspring flock	41
2.3.Body measurements	41
2.3.1.Parent stock	41
2.4.Comb and wattle lengths	41
2.4.1.Parent stock	41
2.5.Egg production parameters	42
2.6.Egg quality measurements	42
2.6.1.External egg quality	42
2.6.1.1.Strength of eggshell	42
2.6.1.2.Shell thickness with shell membranes	42
2.6.1.3.Shell thickness without shell membranes	43
2.6.1.4.Shell percentage	43
2.6.1.5.Egg area	43
2.6.1.6.Egg shape index	43
2.6.1.7.Specific gravity	43
2.6.1.8.Shell index	43
2.6.1.9.Egg volume	44
2.6.2.Internal egg quality	44
2.6.2.1.Albumen quality	44
2.6.2.2.Albumen weight and albumen percentage	44
2.6.2.3.Yolk quality	44
2.6.2.4.Yolk weight and yolk percentage	45
3. Immune competence measurements	45
3.1. PHA-P injection (In vivo cell-mediated immunity assay)	45
3.2.Globulin	45
4. Blood analysis	46

4.1. Total lipids	46
4.2. Cholesterol	46
4.3. Phosphorus	46
4.4. Calcium	46
4.5. Albumen	47
4.6. Total protein	47
5. Statistical analysis	47
RESULTS AND DISCUSSION	49
1. Fertility and Hatchability percentage	49
2. Body measurements	50
3. Egg production traits	54
4. Egg quality measurements	55
4.1. External egg quality measurements	55
4.2. Internal egg quality measurements	56
5. Immune system for parent stock	60
5.1. Phytohemagglutinin-P PHA-P injection	60
5.2. Globulin	61
6. Blood parameters for parent stock	62
7. Body weight for offspring stock	63
8. Body weight gain	65
9. Immune system for offspring	67
9.1. Phytohemagglutinin-P PHA-P injection.	67
9.2. Globulin	68
10. Blood parameters for offspring	69
SUMMARY AND CONCLUSION	71
REFERENCES	75
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1.	the result of the cross and reciprocal cross in Fayoumi and Sinai breeding	38
2.	The composition and calculated chemical analysis of the experimental	
	diets	39
3.	The composition and calculated chemical analysis of the experimental	
	diets for parent stock	40
4.	Fertility and hatchability percentage	49
5.	Body measurements of female and male chickens for parent stock at 27	
	week of age	52
6.	Egg production traits during 90 days and Age 34 wk	54
7.	External egg quality measurements at 28 week of age for parent	
•	stock	56
8.	Internal egg quality measurements at 28 week of age for parent stock	58
	Toe web dermal swelling response (difference) to	
9.	phytohemagglutinin-P injection for parent stock at 50 week of	
	age	61
10.	Globulin level for parent stock at 50 week of age	62
11.	Blood parameters for parent stock	63
12.	Weekly body weight of offspring stock from one day to	
	eighth	65
13.	Weekly cumulative body weight gain for offspring stock	67
	Toe web dermal swelling response (difference) to	
14.	phytohemagglutinin- P injection for offspring at 8 week of	
	age	68
15.	Globulin level for offspring at 8 week of age	69
16.	Blood parameters for off spring	70

LIST OF FIGURES

No.		Page
1.	Body weight of male and female chickens for parent stock at 27 week of age	53
2.	Head Appendages of male and female chickens for parent stock at 27 week of age	53
3.	Head Appendages of male and female chickens for parent stock at 27 week of age	55
4.	Egg weight for parent stock at 27 week of age	56
5.	Shell index at 28 week of age for parent stock	59
6.	Egg shape index at 28 week of age for parent stock	59

INTRODUCTION

Crossing improvement in plants and animals has become one of the most important factors that help to meet the needs of people with the increase in the population of the world and fill the gap of food needs of humans and animals is aimed at increasing productivity wherever the type of production and this study is one of the studies that discuss and help in crossing improvement.

Many scholars have evaluated the egg production potentials of crossbreds between local and exotic chicken genotypes with variable results under controlled environments (Bekele et al., 2010)

Poultry eggs institute one of the most valuable sources of animal protein recommended for human consumption, and offer means of solving the problems of animal protein shortage especially in the rural areas in many African countries (**Olawoyin**, **2006**)

Poultry production sector has an effective contribution in the value of livestock production in Egypt. It is worth about 22.5 billion pounds, represented in poultry meat and eggs: the value of poultry meat is about 16.5 billion pounds, and the value of the eggs is about 6 billion pounds (Wahed 2014).

This study discusses Election by mixing and mating in poultry, between the foreign breeds and standard breeds, but mating between local breeds and standard breeds, but in this study mating between the local breeds with some has been chosen Sinai, With its abundant production of eggs, meat and good weights and has the largest size of eggs Compared to the local breeds and was chosen to mate Fayoumi, which is characterized by its production of heavy eggs and high quality and strong shell eggs and were mixed and the confusion of the reverse and the production of hybrid

INTRODUCTION

members within the framework of education attributed to the increase in productivity of local breeds in the production of eggs and meat and increase immunity or preservation without the need for breeds Foreign.

We will measure the efficiency of eggs, body measurements and immune response in the generation of parents and the generation of chicks and weights of the weekly generation of chicks and blood standards so that we can compare between the groups to know what is the best genetic makeup and increase research on the best group and development and increase breeding.