Longevity and infection free survival of permicath

A Chesis

Submitted for partial fulfillment of master degree in General Surgery

By

Mohammad Ahmed Metwaly Helal

M.B.B.CH (2014) Faculty of Medicine - Ain Shams University

Under supervision of

Prof. Dr. Hazem Abd El Salam

Professor of General Surgery Faculty of Medicine Ain Shams University

Dr. Mohamed Ismail Mohamed

Lecturer of Vascular Surgery Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2018

First of all, I would like to express my deep gratitude to Allah who guided me through my way to come up with this work.

I would like to express my unlimited thanks to **Prof. Dr. Hazem Abd El Salam**, for his encouragement, sustained support, and expert guidance throughout this work. I feel greatly honored to work under his supervision.

No word can fulfill the feelings of gratitude and respect I have in my heart to **Dr. Mohamed Ismail Mohamed**, who honored me by his kind supervision, continuous help and fatherly advice in all stages of the work.

I would like to extend my gratitude and thanks to my professors and my colleagues at vascular surgery department, Ain Shams University for their continuous support.

I want to present this work to all members of my **Family** I am indebted to especially my father and mother, special regard to the hidden soldier my **Wife** for their support and care in every step of my life.

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the work	4
Review of the literature	5
III.I Dialysis catheters parts, material and designs	5
III.II Advantages and disadvantages of tunneled cuffed	catheter 15
III.III Cannulation sites and their related anatomic facts	16
III.III.I Internal jugular vein (IJV) cannulation	16
III.III.II Femoral cannulation	24
III.III Subclavian vein (SCV) cannulation	25
III.IV Cannulation techniques	30
III.IV.I Surgical venous incision (venesection)	30
III.IV.II Catheter through needle technique	31
III.IV.III Catheter over needle technique	32
III.IV.IV Catheter through cannula technique	32
III.IV.V Guide-wire technique (seldinger technic	que) 33
III.V Tunneled cuffed dialysis catheter placement	35
III.V.I Pre-procedural preparation	35
III.V.II Tunneled cuffed catheter placement tech	mique 38
III.VI Morbidities related to catheter placement	44
III.VI.I Early complications	44
III.VI.II Late complications	47
III.VII Tunneled cuffed dialysis catheter removal techni	ique 69

Contents

Patients and methods	72
IV.I Study design	72
IV.II Study location	72
IV.III Study population	72
IV.IV Inclusion criteria	72
IV.V Exclusion criteria	73
IV.VI Sample size	73
IV.VII Study methodology	74
IV.VIII Study endpoints	75
IV.IX Data Management	75
IV.X Ethical considerations	76
Results	77
Discussion	95
Summary and conclusions	100
Recommendations	101
References	103
الملخص العربي	1

List of Abbreviations

Abbr.	Full-term
AVF	Arterio-venous Fistula
AVG	Arterio-venous graft
BFR	Blood Flow Rate
BSI	Blood Stream Infection
CDC	Centre of Disease Control
CFU	Colony Forming Unit
CRBSI	Catheter Related Blood Stream Infection
CVC	Central Venous Catheter
EJV	External Jugular Vein
ESRD	End Stage Renal Disease
HD	Hemodialysis
ICU	Intensive Care Unit
IDSA	Infectious Disease Society of America
IJV	Internal Jugular Vein
INR	International Normalized Ratio
KDOQI	Kidney Dialysis Outcome Quality Initiative
MIRSA	Methicillin Resistant Staphylococcus aureus
PEG	Polyethylene Glycol
PTT	Prothrombin Time
SCV	Subclavian Vein
TCC	Tunneled Cuffed Catheter
UTC	Un-tunneled Catheter

List of Tables

Table No.	Title	Page No.
	Material of construction and incomp chemicals	
	Periprocedural complications (us <24 Hours)	
Table (3):	Early complications (<30 days)	47
	Gender distribution among population	
	Descriptive data of some quanti variables	
	The risk factors distribution among population	
	The performer of catheter place among study population	
	Ultrasound guidance during ca insertion among study population	
` /	The vein in which the catheter inserted among study population	
, ,	The proportion of catheters completed one year in-site of instances among study population	ertion
, ,	The proportion of catheters completed six months in-site of ins among study population	ertion
Table (12):	The frequency of reported events of stream infection among study popular	blood

Table (13):	The times of onset of infection among study population	33
Table (14):	The fates of inserted catheters among study population	33
Table (15):	The frequencies of occurrences of different reasons of inserted catheters removal among study population	34
Table (16):	The frequencies of ICU admission due to BSI among study population	34
Table (17):	The frequency of deaths related to blood stream infection among study population 8	35
Table (18):	The significance of 'vein used' against the following variables using Fisher's Exact Test	35
Table (19):	The significance within study population for quantitative variables	36
Table (20):	The significance of 'vein used' against the following variables using Fisher's Exact Test	36
Table (21):	Correlation for quantitative variables8	37
Table (22):	Correlation between most of the variables of the study	39
Table (23):	Rates of different variable per 1000 catheter days9)4

List of Figures

Figure No.	. Title Page	No.
Figure (1):	Tunneled cuffed hemodialysis catheter component	 5
Figure (2):	Single lumen catheter	 6
Figure (3):	Lumen configuration	 6
Figure (4):	Three types of tunneled hemodialysis catheters	 7
Figure (5):	Halkey-Roberts clamp.	10
Figure (6):	Sedillot's triangle	17
Figure (7):	Ultrasound image of lift internal jugular vein (IJV) and lift carotid artery (CA)	23
Figure (8):	Ultrasound image of right internal jugular vein compressed by gentle probe pressure (IJV) and carotid artery (CA)	23
Figure (9):	Surgical venous incision (venesection) & Catheter through needle techniques	 31
Figure (10):	Catheter over needle technique	32
Figure (11):	Steps of seldinger technique	34
Figure (12):	Ultrasound-guided puncture of the internal jugular vein with a seldinger micro-puncture needle.	 39
Figure (13):	Placement of the tunneled cuffed catheter alongside the anticipated catheter course to determine where to position the exit site.	 40

Figure (14):	Tunneling of the catheter subcutaneously from the chest incision to the neck incision anterior to the clavicle
Figure (15):	Dilatation of the track of the wire42
Figure (16):	Insertion of the tunneled hemodialysis catheter through the peel-away sheath
Figure (17):	Chest radiograph demonstrating proper position of the tip of the tunneled hemodialysis catheter at the level just below the right main stem bronchus
Figure (18):	Pathogenesis of catheter related blood stream infection
Figure (19):	Age distribution among study population
Figure (20):	Catheter days distribution among study population88

Abstract

Background: A hemodialysis catheter is a small biocompatible tube made of soft flexible material. It is inserted into a patient's target vein to provide vascular access for hemodialysis. As important as catheter placing and handling guide-lines to prevent infection reporting standards are equally important, as they are the tools to enable us to evaluate our work attitudes, how much are we sticking to the guide-lines, how are we managing our resources, and are we aware of the resources we have or not. Aim of the Work: to figure the outcome and infection rate related to tunneled-cuffed catheters in patients with ESRD needing dialysis who were submitted to tunneled cuffed catheter placement during the period from May 2017 to April 2018. Patients and methods: This retrospective descriptive study was conducted in 35 TTCs patients in the Vascular Surgery department ASU Hospital. Target population included patients of ESRD who were submitted for tunneled cuffed dialysis catheter placement in the Vascular Surgery department ASU Hospital in the period from May 2017 to April 2018. **Results:** A total of 35 TCCs were inserted in end-stage renal disease patients for hemodialysis. Total number of catheter days was 6343 days. The primary unassisted patency rates at 6 months and 1 year were 51.4 % and 11.4 % respectively. Of the 35 cases 19 (54.28 % of the total population) reported infection episode. 5 (26.3 % of the infected population) TCCs were removed due to a severe episode of BSI, of the removed TCCs 2 (10.5 % of the infected population) were died. The TCC bacteraemia rate was 2.186 per 1000 catheter days. The total number of the removed TCCs was 14 (40 % of the total population). The reasons for removal were non-patency, infection, and completion of therapy with percentage of 22, 8%, 14.3%, and 2, 9% respectively. Conclusion: Tunnelled cuffed haemodialysis catheters are vital line of treatment in patients requiring long term haemodialysis especially elderly population with weak vasculature or consumed peripheral accesses in which it is considered an access of choice.

Key words: longevity, infection-free survival, permicath, turneled-cuffed catheters, ESRD patients, hemodialysis

Introduction

Centrally place venous catheters for hemodialysis have become an essential part of recently established medical care given to ESRD patients. The most important criteria that define centrally placed catheters is that there tips are positioned at the cavo-atrial area. Tunneled cuffed catheter is one of the devices used to be placed in a central vein for the purposes needing long term vascular access more than 3 weeks as determined by the national kidney foundation KDOQI [1].

Tunneled cuffed dialysis catheter has an important superiority over regular central venous catheters, which is having a subcutaneous cuff which is when placed subcutaneously it starts ingrowth forming a barrier that stops or delays infection.

Recently there is increased relying on centrally placed catheters to start and maintain hemodialysis (HD), one of the important reason behind this is the changing demographic population of patients needing HD with more elderly and diabetic patients with week target vasculature where surgical vascular access can be made ^[2].

Dialysis access related blood stream infection and the complications related to such problem requiring hospitalization, account for almost 1/3 of the cost of end stage renal disease (ESRD) management with documented death rate of 12-25.9% [3].

Surveillance data suggests that central venous catheters (CVCs) are associated with higher blood stream infection (BSI) rates than arteriovenous grafts (AVG) and arteriovenous fistula (AVF). With mean incidence of CRBSI for UTCs to be 5 episodes/1000 catheter days, and a lower mean incidence for TCCs to be 3.5 episodes/1000 catheter days [3].

The estimated cost of the treatment of an episode of BSI has been calculated to be in the range of US \$3,800 to US \$29,000 per patient. Although the reported risk of catheter related blood stream infection (CRBSI) is higher for untunneled catheters (UTCs) compared to tunneled cuffed catheters (TCCs), the management cost of TCC-related BSI is much higher [3].

International reports stated that a 250,000 cases of central venous catheter associated BSI occurs annually that when analyzed found to cost too much in the terms of morbidity and financially, so preventive guide-lines had been established to prevent such infection through a multi-disciplinary effort involving health care professionals who insert or remove CVCs, catheter maintenance provider, infection control personnel and those who allocate resources ^[4].

National kidney foundation DOQI stated that good practice while placing and nursing of the CVCs can reduce the incidence of infection dramatically near 4 fold which certainly has a good impact on the final outcome regarding patient quality of life and the economic cost ^[1].

As important as catheter placing and handling guidelines to prevent infection reporting standards are equally important, as they are the tools to enable us to evaluate our work attitudes, how much are we sticking to the guide-lines, how are we managing our resources and are we aware of the resources we have or not.

In Ain Shams University we are facing a good rate of ESRD patients who were submitted for tunneled cuffed dialysis catheter placement procedure. A big percentage of them presented in the outpatient clinic with an infection episode and some of them had removed the tunneled catheter, why infected? And what are the rates of infection regarding tunneled catheters?

Therefore, this study evaluates the infection rate related to tunneled cuffed dialysis catheter in patients suffering ESRD at Ain Shams University Hospital.

Aim of the Work

The study we have in our hands aims to figure the outcome and infection rate related to tunneled-cuffed catheters in patients with ESRD needing dialysis who were submitted to tunneled cuffed catheter placement during the period from May 2017 to April 2018.