

MR defecography in obstructed Defecation syndrome

Thesis

For partial fulfilment of master degree in Radio-diagnosis

By

Mudathr Yousif M. Idris

M.B.B.Ch, Elimam Almahdi University-Sudan

Dr. Sahar Mohamed El Fiky

Professor of Radiology Faculty of Medicine – Ain Shams University

Dr. Aliaa Sayed Sheha

Lecturer of Radiology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First of all, I would like to express my deepest gratitude and thankfulness to **Allah** for giving me the will and strength to fulfill this work.

I wish to express my deepest gratitude to **Prof. Dr. Sahar Mohamed El Fiky,** Professor of Radiology, Faculty of Medicine — Ain Shams University, for this kind support, great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to thank **Dr. Aliaa Sayed Sheha**, Lecturer of Radiology, Faculty of Medicine – Ain Shams University for her continues guidance and great support.

Last but not least, it gives me the greatest pleasure to thank all my family members and my friends for their assistance and faithful and arrangement.

List of Contents

Subject Page	No.
List of Abbreviations	i
List of Tables	ii
List of Figures	vii
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy of Pelvic Floor	5
Physiology of Normal Defecation	29
Pathophysiology of Obstructed Defecation	32
Physics of Magnetic Resonance Imaging	39
Interpretation of MRI Findings In Obstructed Defecation Syndrome	64
Patients & Methods	66
Results	76
Case Presentation	81
Discussion	91
Summary and Conclusion	97
References	98
Arabic Summary	—

List of Abbreviations

Abbr.	Full-term				
AC	Anal canal				
ARA	Ano-rectal angle				
ARJ	Anorectal junction				
ASC	Anal sphincter complex				
ATFP	Arcustendineus fascia pelvis				
ATLA	Arcus tendineus levator ani				
В	Bladder				
BN	Bladder neck				
BSSFP	Balanced steady-state free precession				
CM	Coccygeus muscle				
CNS	Central nervous system				
DICOM	Digital Imaging and Communications in Medicine				
\mathbf{DM}	Diabetes mellitus				
EAS	External anal sphincter				
EO	External urethral orifice				
FOV	Field of View				
FSE	Fast-spin echo				
GRE	Gradientrecalledecho				
HASTE	Half Fourier Acquisition Single shot Turbo spin Echo				
IC	Iliococcygeus muscle				
IOM	Internal obturator muscle				
IPR	Inferior pubic ramus				
IAS	Intrnal anal sphinctor				
IS	Ischial tuberosity				
ISD	Intrinsic sphincter deficiency				
ISP	Ischial spine				
LA	Levatorani muscle				
MM	Muscularis sub mucosaeani				
MRI	Magnetic resonance imaging				
NPV	Negative predictive value				

OF Obturator foramen
OM Obturator muscle
PA Pubo-analis

PB Perineal body Pubic bone

PC Pubo coccygeus muscle
PCF Pubocervical fascia
PCL Pubococcgeal line

PFD Pelvic Floor Dysfunction

PFMC Pelvic floor muscle contraction

POP Pelvic organ prolapse
PPV Positive predictive value
PR Puborectalis muscle
PULs Pubo urethral ligaments

R Rectum

RS Rhabdo sphincter SD Standard deviation

SE Standard error of the mean

SNR Signal-to-noise ratio SP Symphysis pubis

SSFSE Single-shot fast spin echosequences

SUI Stress urinary incontinence

T Tesla

T2WI T2-weighted imagesTSE Turbo spin-echo

U Urethra

UB Urinary bladder

UT Uterus

List of Tables

Table N	o. Title	Page No.
Table (1):	International standardized term (Nomina Terminologica) divisions levator ani muscle	of the
Table (2):	Anatomical relations of the rectum	21
Table (3):	Anatomical relations of the anal canal	128
Table (4):	Grading of pelvic floor descent	64
Table (5):	Age categories among the studied pat	ients76
Table (6):	Agreement between MRI diagnost Clinical Diagnosis in the participants	selected

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Compartments of the pelvis	6
Figure (2):	Attachments of the cervix and vagin pelvic walls demonstrating different resupport with the uterus in situ	egions of
Figure (3):	Levels of vaginal support after hyster Level I (suspension) and level II (attac	•
Figure (4):	Close up of the lower margin of level wedge of vagina has been removed (in	
Figure (5):	Lateral view of the pelvic floor strelated to urethral support seen from in the standing position, cut just later midline.	the side al to the
Figure (6):	Position of the perineal membrane associated components of the urogenital sphincter, the compressor and the urethrovaginal sphincter	striated urethra,
Figure (7): T	The perineal membrane spans the arch the ischiopubic rami with each side att the other through their connection perineal body	ached to in the
Figure (8):	Lateral view of the pelvis show relationships of the puber iliococcygeus and pelvic floor structuremoval of the ischium below the spacrospinous ligament (SSL), extern sphincter (EAS)	orectalis, res after pine and nal anal

Figure (9): a	A/ Schematic view of the levator ani muscles from below after the vulvar structures and perineal membrane have been removed showing the arcus tendineus levator ani (ATLA)
Figure (10):	The sacral and anorectal flexures of the rectum.
Figure (11):	The peritoneal reflections of the rectum in males (A) and females (B)21
Figure (12):	Sagittal section of the female pelvis, showing the anatomical position of the rectum
Figure (13):	The superior rectal artery, supplying the upper aspect of the rectum
Figure (14):	The Internal and external anal sphincters 26
Figure (15):	The anal columns, anal valves and pectinate line
Figure (16):	Anorectal angle
Figure (17):	Diagram shows anterior rectocele and mucasal intussusception
Figure (18):	A 54-year old female patient, MR images obtained at rest (a), at squeezing (b), the position of the base of the bladder
Figure (19):	A 54-year old female patient with a moderate descent of the posterior compartment during defecation
Figure (20):	Measurement of the ano-rectal angle (ARA) 54
Figure (21): F	External coil axial oblique T2-weighted turbo spin- echo demonstrates the perineal body (P) with attachment of the transverse perineal muscle55

Figure (22):	Endoanal coronal oblique T2-weighted turbo spin-echo. The relative hyperintense internal anal sphincter (IS) is bordered by the intersphincteric space with the longitudinal layer (LL)
Figure (23):	External coil coronal oblique T2-weighted turbo spin echo
Figure (24):	Endoanal axial oblique T2-weighted turbo spin-echo through the lower half of the anal sphincter
Figure (25):	External coil axial oblique T2-weighted turbo spin-echo shows the pubovisceral muscle 60
Figure (26):	(A-D)Severe descent of the anorectal junction with moderate anterior rectocele
Figure (27):	(A-D)Rectorectal intussusception. Normal position at rest
Figure (28):	(A-D)Spastic pelvic floor syndrome. Normal position at rest (A). During straining (B) and defecation (C), there is persistent prominent indentation of the puborectalis sling on the posterior rectal wall with an acute anorectal angle. (D) shows the acute anorectal angle of approximately 44° (measured between the posterior rectal and anal walls) during defecation
Figure (29):	(A-C)Enterocele. Normal position at rest (A). During defecation (B and C), there is descent of the peritoneal sac with small bowel loops along the anterior rectal wall representing an enterocele. Also note the bladder and anorectal descent, anterior rectocele, and rectorectal intussusceptions

Figure	tricon	npartmenta	scending l defect A)	gram.	Normal	74
Figure (3	1): Clinica	al Picture in	n the selecte	d particip	oants	77
Figure (32	perce	ntage of	selected part findings	related	to ODS	79
Figure (3.	during of the	g pelvic str anorectal	weighted in rain shows junction be t 4.4 cm	Moderat low the l	e descent PCL by a	81
Figure (3	patier rectur	t during n with	T2-weighte pelvic stranterior	ain shov and	ws mega posterior	82
Figure (patier indica Desce	t during te pelvic ending peri	T2-weighte pelvic stra floor laxity neal syndro e	nin meas during me with	surements straining. moderate	83
Figure (3	during muco rectua intoss diffus	g pelvic st sa (anterioral lume usception e thicken	weighted in rain shows r and posteri en deno associated ing in low ssuception	invgination wall) ting with Eviver rectu	on of the inside the inrarectal dence of m likely	84
Figure (3	during obtuse about	g pelvic sed enough (3.5cm).	weighted in train. The a n.There is associated cm. There is	anorectal anterior with sev	angle is rectocele er pelvic	85

Figure (38):	MRI Sagittal T2-weighted images of the patient during pelvic strain shows Evidence of short segment full thickness intra-anal rectal intusseption. Obvious urine incontinence	86
Figure (39):	MRI Sagittal T2-weighted image of the patient during pelvic strain shows moderate pelvic floor descend below the PCL and peritoneal entrocele (Note the laxity of the uterus upon the superior wall of the rectum). There is anterior rectocele.	87
Figure (40):	MRI Sagittal T2-weighted image of the patient during pelvic strain shows moderate pelvic floor descend below the PCL and acute anorectal angle during defecation.	88
Figure (41):	MRI Sagittal T2-weighted images of a control case at rest(a) and during pelvic strain (b) show no anorectal angle descent below the pubococcygeal line	89
Figure (42):	MRI Sagittal T2-weighted images of a control case at rest (a) and during pelvic strain (b) show no bladder neck descent below the pubococcygeal line	90

ABSTRACT

Objective:

Obstructed defecation syndrome (ODS) is a type of constipation characterized by fragmented stools, need for straining at defecation, sense of incomplete evacuation, tenesmus, urgency and pelvic heaviness. This study is aimed to assess and compare and matching the role of Dynamic magnetic resonance imaging (MRI defecography) with the cilincal diagnosis in such patients.

Methods:

This retrospective, case-control study was conducted on twenty patients suffering from obstructed defecation syndrome that have been diagnosed clinically. The patients age is ranging between 16 and 69 years old.

Results:

Statistically MRI study showed significant anatomical defects (p<0.05) as the followings:

Most of patients had Rectocele (65%), spastic pelvic floor Syndrome, because of pelvic floor descents in (55%) of patients. Intussusception (45%), Cystocele (30%), enterocele (25%), Anismus (15%) and uterine prolapse (15%)

Conclusion:

- MRI has good value to detect abnormalities pertinent to posterior compartment in pelvis.
- Results of MR imaging showed positive agreement with clinical diagnosis of ODS in65% of patients.
- MRI showed (65-90)% sensitivity, specificity, positive and negative predictive values as well as accuracy.

MRI assessment of the posterior pelvic compartment can be indicated to detect the anatomical defects and lead to more successfull patient management and subsequently decreases the rate of postoperative recurrence.

Key Words: Obstructive defecation; Defecography; Dynamic magnetic resonance imaging.

Introduction

Obstructed defaecation syndrome is a common condition in which a persons are unable to evacuate their bowels properly.

This syndrome is characterised by difficulty passing motions, multiple (often unsuccessful) visits to the toilet, a sensation of a blockage and incomplete emptying. Patients with obstructed defecation syndrome often use their finger to help them to empty, pushing on the perineum (the skin in front of the anal canal), on the back wall of the vagina or in the anal canal itself. Patients often have some symptoms of fecal incontinence.

Generally ODS is caused by the structural abnormalities associated with a weak pelvic floor or prolapse disease (intussusception or internal rectal prolapse,rectocele). Less commonly (about 5-10%), a tight pelvic floor is the cause. Also there are clinical causes like irritable bowel syndrome and psychological disturbances (*Marzuok Deya*, 2012).

The pelvic floor is divided into three compartments: the anterior compartment (lower urinary tract), the middle compartment (vagina/uterus), and the posterior compartment (ano-rectum). The pubococcygeal line is drawn from the inferior border of the pubic symphysis to the last coccygeal

articulation. The anorectal angle is formed between the posterior walls of the rectum and anal canal at the anorectal junction. At rest, the anorectal angle is acute due to the indentation of the puborectalis sling on the posterior rectal wall. During normal defecation, there is mild pelvic floor descent with relaxation of the puborectalis. Consequently, the anorectal angle becomes wider, so that the rectum and anal canal become aligned in almost a straight line followed by evacuation. Various pathologies can be diagnosed and graded using MRI. The descent of the anorectal junction, vaginal vault, bladder (cystocele), and small bowel (enterocele) can be measured as the perpendicular distance below the pubococcygeal line. Usually, multiple pathologies are found to co-exist and can sometimes create a confusing overall picture (*Ravicumar B Thapar*, 2015).

Constipation is a very common presentation by the patients of a practicing surgeon. Any constipation that defies the existing understanding merits consideration for its evaluation for obstructed defecation. Constipation can be of primary or secondary variety. After clinically excluding the usual causes of constipation and ruling out colonic motility disorders, specialised investigations like dynamic defecography help in further management of obstructed defecation syndrome (*Brij B. Agrawal 2015*).