

Current Perspective of Laparoscopic Cholecystectomy for Acute Cholecystitis

Thesis

Submitted for Partial Fulfillment of the Master Degree in General Surgery

By

Yehia Khaled Said Mohamed Salem

M.B.B.Ch.

Faculty of Medicine, Ain Shams University

Under Supervisors

Prof. Dr. Abdelghany Mahmoud AlShamy

Professor of General Surgery
Faculty of Medicine – Ain Shams University

Dr. Karim Fahmy Abd El Moaty

Lecturer of General Surgery
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2018

First of all, thanks to **Allah** whose magnificent help was the main factor in completing this work.

No words could express my deepest thanks and appreciation to **Prof. Dr. Abdelshany Mahmoud AlShamy,** Professor of General Surgery, Faculty of Medicine, Ain Shams University, for inspiring me with the idea of this work. His patience, precious advice and guidance enlightened my way throughout this work.

I want also to express my profound gratitude to **Dr. Karim Fahmy Abd El Moaty,** Lecturer of General Surgery, Faculty of Medicine, Ain Shams University, for his patience, valuable advice and continuous help in completing this work.

Finally, my deepest thanks to all my family especially my wife and colleagues who helped me in the production of this work.

Contents

Subjects	Page
List of abbreviations List of figures List of tables	IV
• Introduction	1
Aim of the Study	3
• Review of Literature	
◆ Chapter (1): Anatomy of the Biliary Tree and t Gall Bladder	
♦ Chapter (2): Pathophysiology of Biliary System	n28
♦ Chapter (3): Management of Acute Calcular Cholecystitis	50
◆ Chapter (4): Laparoscopic Cholecystectomy	58
◆ Chapter (5): Complications of Laparoscopic Cholecystectomy	
Patients and Methods	92
• Results	107
• Discussion	121
• Summary	130
• Conclusion	132
• References	133
• Arabic Summary	

List of Abbreviations

AC	Acute cholecystitis
ACC	. Acute calculus cholecystitis
CA	.Communicating Arcade
CBD	.Common bile duct
CD	. Cystic duct
СНА	.Common hepatic artery
CHD	.Common hepatic duct
CT	.Computerized tomography
ELC	. Early Laparoscopic cholecystectomy
GB	. Gallbladder
GDA	. Gastroduodenal artery
HIDA	. Hydroxyiminodiacetic acid
LC	.Laparoscopic cholecystectomy
LHA	. Left hepatic artery
LHD	.Left hepatic duct
MC	. Minilaparotomy cholecystectomy
MRCP	. Magnetic resonance cholangiopancreatography
MRI	. Magnetic resonance imaging
OC	. Open cholecystectomy

List of Abbreviations

PD Pancreatic duct PSPDAPosterior superior pancreaticoduodenal artery PTCPercutaneous Trans hepatic cholangiography RASARight anterior sectoral artery RASDRight anterior sectoral duct RECP.....Endoscopic retrograde cholangiopancreatography RHARight hepatic artery RHDRight hepatic duct RPSD Right posterior sectoral duct SILS.....Single incision laparoscopic surgery SMV Superior mesenteric vein SSLCSingle site laparoscopic cholecystectomy SV Splenic vein US...... Ultrasonography

List of Figures

No.	<u>Figure</u>	Page
<u>1</u>	Embryologic development of biliary tree	4
<u>2</u>	Variations in the junction of the cystic duct and common hepatic duct	6
<u>3</u>	Variations of cystic artery	7
<u>4</u>	Anatomy of the extrahepatic biliary tree and pancreatic duct	8
<u>5</u>	Relationship of structures within the hepatoduodenal ligament	9
<u>6</u>	Variation of origin of cystic artery	13
<u>7</u>	The bile duct blood supply	16
<u>8</u>	Normal arterial pattern of extrahepatic biliary tract	19
9	Nerve supply of biliary system	21
<u>10</u>	Sites of potential biliary tract malformations	22
<u>11</u>	Main variations in gall bladder and cystic duct anatomy	23
<u>12</u>	Atresia of biliary tract	25
<u>13</u>	Five general forms of Choledochal cyst	27
<u>14</u>	Barium follow through showing intestinal obstruction and cholecystoduodenal fistula	48
<u>15</u>	Ultrasound shows marked thickening of the gall bladder wall	51
<u>16</u>	Define the neck of gallbladder by retracting the infundibulum	69
<u>17</u>	Define gallbladder cystic duct junction	69
<u>18</u>	Identify the cystic lymph node in the Calot's triangle	70

List of Figures

No.	<u>Figure</u>	<u>Page</u>
<u>19</u>	Display all the structures in the Calot's triangle	70
<u>20</u>	Visualization of gall bladder after placement of table in reverse Trendelenburg position	72
<u>21</u>	Placement of 11 mm trocar under vision	72
<u>22</u>	Placement of 2 lateral 5 mm ports under vision	73
<u>23</u>	External view after port placement	73
24	Medial grasper is used to retract infundibulum in caudolateral direction	74
<u>25</u>	Critical view with only cystic duct and artery seen entering gall bladder	74
<u>26</u>	Use of hook to score anterior peritoneum	75
<u>27</u>	Division of peritoneum along medial aspect	75
<u>28</u>	Use of Maryland dissector to dissect cystic duct	76
<u>29</u>	Use of Maryland dissector to dissect cystic artery	76
30	Dissection of critical structures	77
31	Placement of clip at lower aspect of cystic artery	77
32	Placement of superior clip on cystic artery	78
33	Transection of cystic artery with endo shears	78
34	Placement of clips on distal cystic duct	79
35	Placement of proximal clip on cystic duct	79
36	Clipped cystic duct before transection	80
<u>37</u>	Transection of cystic duct between clips with endo shears	80

No.	<u>Figure</u>	<u>Page</u>
<u>38</u>	Use of hook to develop plane in areolar tissue between gall bladder and liver	81
<u>39</u>	Use of traction and hook to remove gall bladder	81
<u>40</u>	Side to side sweeping motion to remove the gall bladder from bed	82
<u>41</u>	Cauterization of any bleeding in gall bladder bed before complete division of gall bladder	82
<u>42</u>	Irrigation and suction of gall bladder bed	83
<u>43</u>	Removal of ports under direct vision	83
<u>44</u>	Excellent cosmetic results following mini laparoscopic cholecystectomy	86
<u>45</u>	Severe adhesions was found between the liver and omentum and anterior abdominal wall.	98
<u>46</u>	Dissection of cystic artery	99
<u>47</u>	Critical view of safety	100
<u>48</u>	Clipping of cystic duct	100
<u>49</u>	Hook electro-cautery used to dissect the gallbladder off the liver bed	101
<u>50</u>	Removal of the gall bladder from its bed	102
<u>51</u>	Clean liver bed with clipped cystic duct and cystic artery	102
<u>52</u>	This picture shows the body of the gallbladder that becomes distended during removal	103
<u>53</u>	The percent of males and females in the two groups	107

List of Figures

No.	<u>Figure</u>	<u>Page</u>
<u>54</u>	The mean of age between the two groups	108
<u>55</u>	Percent of biliary colic in history between the two groups	110
<u>56</u>	The mean of duration of acute symptoms in both groups	111
<u>57</u>	The percent of patients with WBC count more than 11.000/ ml in both groups.	112
<u>58</u>	The rate of conversion to open cholecystectomy in both groups	114
<u>59</u>	The mean of operative time in both groups	115
<u>60</u>	The rate of gallbladder decompression between the two groups	116
<u>61</u>	The mean of total hospital stay between the two groups	120

List of Tables

No.	<u>Table</u>	<u>Page</u>
1	Composition of Human Hepatic Duct Bile	30
<u>2</u>	Diagnostic Criteria for Acute Cholecystitis,	52
	According to Tokyo Guidelines	34
<u>3</u>	Comparison between patient's criteria and	109
	co- morbidities in both groups	109
<u>4</u>	History of biliary colic in both groups	110
<u>5</u>	Comparison between labs. Investigations,	112
	U/S findings in both groups	113
<u>6</u>	Intraoperative modifications in both groups	117
<u>7</u>	Intraoperative and postoperative complications in both groups	119
8	Total hospital stay in both groups	121

Introduction

Acute cholecystitis is a potentially life-threatening condition, which affects >5 million Egyptian yearly and causes high economic burden around the world. Gallstones is the major contributor to acute cholecystitis (**Strasberg et al., 2008**).

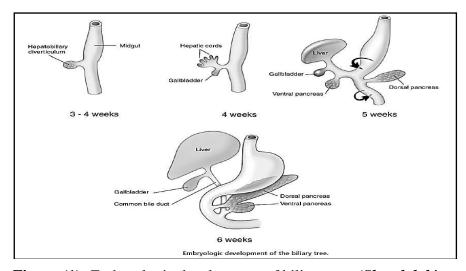
Laparoscopic cholecystectomy (LC) is an important approach for treating acute cholecystitis nowadays. Issued data indicated that approximately 600,000 and >30,000 LCs were annually performed to treat acute cholecystitis in the Egypt. Although LCs have been extensively performed to manage acute cholecystitis, the optimal timing of LC for this given condition is inconclusive (**Ingraham et al., 2010**).

Traditionally, given the higher rate of morbidity such as bile duct injury, leakage, and conversion to open surgery, the delayed LC (DLC), which is defined as at least 1 week after initial conservative treatment, is commonly adopted in treating acute cholecystitis. However, several clinical studies supported early LC (ELC) (within 7 days of the onset of symptoms) to treat acute cholecystitis (Gomi et al., 2013).

Introduction

Although some researchers investigated the optimal timing of LC for patients with acute cholecystitis previously, a consistent and conclusive conclusion has not yet been obtained from these researches. For instance, 2 researches qualitatively supported no difference between ELC and DLC in terms of mortality, 1 indicated no difference in both approaches for this outcome, and 2 considered this given outcome, but the effects of both approaches in causing mortality were identified. Moreover, 4 researches indicated that DLC shortens the duration of operation; however, 2 identified no difference between DLC and ELC in terms of this given outcome. Most importantly, these conflicting findings will confuse the informed decision making. And thus, we performed this thesis research of discordant meta-analyses to further assess the effects of ELC for acute cholecystitis compared with DLC (Zhou et al., 2014).

Aim of the Study


The aim of this study is To highlight the optimal time for laparoscopic cholecystectomy in acute cholecystitis, comparing early and delayed laparoscopic cholecystectomy in terms of duration of the surgery, difficulties, conversion to open surgery and complicatios.

Chapter (1)

Anatomy of the Biliary Tree and the Gall Bladder

Embryology of the Biliary Tract:

The biliary tree and liver develop from a diverticulum of the embryonic foregut at approximately 18 days of gestation. Between the fourth and fifth weeks, the diverticulum consists of a solid cranial portion and a hollow caudal portion. The solid cranial portion differentiates into the liver with the development of hepatocytes and intrahepatic bile ducts, while the hollow caudal portion gives rise to the gallbladder, the extrahepatic bile ducts, and the ventral pancreas (*Schulick*, 2011). (*fig1*)

Figure (1): Embryologic development of biliary tree (*Skandalakis et al., 2004*)