ABSTRACT

Background: Gastroesophageal reflux disease (GERD) is one of the most prevalent gastrointestinal disorders, and its prevalence is increasing worldwide. It is a condition that develops by reflux of the stomach contents into the esophagus, and causes troublesome symptoms, such as heartburn and regurgitation. The aim of this work is to evaluate the serum level of IL4 in patients with GERD and patients with refractory GERD.

Patients and methods: The study included two groups of patients, Group-1 including 25 patients with GERD symptoms who didn't receive treatment or who received treatment for less than 8 weeks with improvement of symptoms and Group-2 including 25 Patients with refractory GERD and who received PPIs for more than 8 weeks without improvement of symptoms. Results: Serum Interleukin-4(IL4) level was elevated in patients with refractory GERD more than patients with GERD, Serum IL4 level was elevated in patients with Barrett's esophagus more than patients with Reflux oesophagitis. Conclusion: The study has concluded that : Serum Interleukin-4(IL4) level was elevated in patients with refractory GERD more than patients with GERD, Serum IL4 level was elevated in patients with Barrett's esophagus more than patients with Reflux oesophagitis, Pathological features that we found in patients with GERD were moderate reflux oesophagitis (52%), mild reflux oesophagitis (40%) and severe reflux oesophagitis (8%), while in patients with refractory GERD there were severe reflux oesophagitis (56%), Barrett's esophagitis (28%) and moderate reflux oesophagitis (16%).

Key words: GERD, Refractory GERD, Interleukin-4, IL4, Reflux oesophagitis, Barrett's esophagus.

.

List of Contents

Ti	Title I	
•	List of Abbreviations	. I
•	List of Tables	. V
•	List of Figures	. VII
•	Introduction	. 1
•	Aim of the Work	. 4
•	Review of Literature	
	- Chapter (1): GERD	. 5
	- Chapter (2): Refractory GERD	. 44
	- Chapter (3): Interleukin-4 and its relation	
	with GERD	. 87
•	Patients and Methods	.91
•	Results	. 97
•	Discussion	. 119
•	Summary	. 128
•	Conclusion	. 132
•	Recommendations	. 133
•	References	. 134
•	Arabic Summary	

5-HT45-hydroxytryptamine-4 **AL2+**.....Aluminum **ALT**......Alanine Aminotransferase **APC**Argon Plasma Coagulation **AST**.....Aspartate Aminotransferase **ATP**.....Adenosine Triphosphate B cells B Lymphocytes **BE**.....Barrett's Esophagus **Ca**......Calcium CanDys......Canadian Dyspepsia **CBC**Complete Blood Count **CBT**Cognitive Behavioral Therapy **CCB**Calcium Channel Blocker **C1**......Chloride **Cm**.....Centimeter **COPD**......Chronic Obstructive Pulmonary Disease **Creat**Creatinine **CYP2C19 (P450 2C19)** Cytochrome P450 2C19 **D2**......Dopamine 2 **DGER**.....Duodenogastroesophageal Reflux DISDilated Intercellular Spaces DNADeoxyribonucleic Acid **EAC**Esophageal Adenocarcinoma **EE**.....Erosive Esophagitis **EGD** Esophagogastroduodenoscopy **ENT**Ear, Nose, Throat **EoE**.....Eosinophilic Esophagitis

EST.....Electrical Stimulation Therapy **FDA**Food and Drug Administration g/dLGrams Per Deciliter **GEJ**Gastroesophageal Junction GERD.....Gastroesophageal Reflux Disease **GI**Gastrointestinal **GIT**Gastrointestinal Tract **H**.....Hydrogen **H. pylori**Helicobacter Pylori **H2RAs**Histamine-2 Receptor Antagonists HCLHydrochloric Acid HCO3.....Bicarbonate **HDL-C**.....High Density Lipoprotein Cholesterol **HH**.....Hiatus Hernia HRQL.....Health-Related Quality of Life **IBS**.....Irritable Bowel Syndrome **IFN-γ**Interferon-γ IL.....Interleukin INRInternational Normalized Ratio IPGImplantable Pulse Generator K.....Potassium LES.....Lower Esophageal Sphincter **LESP**.....Lower Esophageal Sphincter Pressure M receptors......Muscarinic Receptors mEq/L.....Milliequivalents Per Liter Mg2+Magnesium MiiMultichannel Intra-Luminal Impedance

minsMinutes

mm of HgMillimeters of Mercury

mm.....Millimeter

MUSE..... Medigus Ultrasonic Surgical Stapler

NaSodium

NABNocturnal Acid Breakthrough

NERD......Non Erosive Reflux Disease

NSAIDsNon-Steroidal Anti-Inflammatory Drugs

P valueProbability Value

PgPicogram

PGEProstaglandin E

PMNLsPolymorphonuclear Leukocytes

PPIsProton Pump Inhibitors

PT.....Prothrombin

PTT.....Partial Thromboplastin Time

QOLQuality of Life

REReflux Esophagitis

ROC curveReceiver Operator Characteristic Curve

SD.....Standard Deviation

SSR.....Sustained Symptom Response

SSRISelective Serotonin Reuptake Inhibitors

T cellsT lymphocytes

TCAs.....Tricyclic Antidepressants

TEATranscutaneous electrical acustimulation

Th cells T Helper Cells

TIF.....Transoral Incisionless Fundoplication

TLESR	.Transient Lower Esophageal Sphincter Relaxation
TNF-a	.Tumor Necrosis Factor-α
U/L	.Unit per Liter
vs	.Versus

List of Tables

Table No.	Title Pag	ge
Table (1):	GERD symptoms (Typical & Atypical) 10)
Table (2):	Table showing Los Angeles classification of Erosive Esophagitis 22	2
Table (3):	Causes of refractory GERD 45	5
Table (4):	Comparison between the two groups of patients as regard age and sex 97	7
Table (5):	Comparison between the two groups of patients as regard IL499)
Table (6):	Comparison between the two groups as regard Routine laboratory investigations	00
Table (7):	Comparison between the two groups as regard Endoscopy)1
Table (8):	Comparison between the two groups as regard Past medical history 10)3
Table (9):	Comparison between the two groups as regard Pathology)4
Table (10):	Relation of Pathology to age and sex in the group of GERD)5
Table (11):	Relation of Pathology to age and sex in the group of PPI duration (>8 weeks))5
Table (12):	Relation between Pathology and (IL 4 & routine laboratory investigations) in the group of GERD)6

List of Tables

Table No.	Title Page
Table (13):	Relation between Pathology and (IL4 & Routine Lab investigations) in the group of Refractory GERD
Table (14):	Relation between Pathology and Endoscopy in the group of GERD 110
Table (15):	Relation between Pathology and past medical history in the group of GERD
Table (16):	Relation between Pathology and Endoscopy in the group of Refractory GERD
Table (17):	Relation between Pathology and past medical history in the group of Refractory GERD
Table (18):	Correlation between Interleukin-4, age and other laboratory investigations in the group of GERD
Table (19):	Correlation between Interleukin-4, age and other laboratory investigations in the group of Refractory GERD
Table (20):	Accuracy of Interleukin-4 between GERD and Refractory GERD as regard ROC curve

List of Figures

Figure No.	Title	Page
Fig. (1):	Protective mechanism against noxious refluxate at the level of the esophageal mucosa	9
Fig. (2):	Natural antireflux mechanisms at the esophagogastric junction	
Fig. (3):	Gastroesophageal reflux disease pathogenesis	
Fig. (4):	Los Angeles Classification of GERD	23
Fig. (5):	Progressive histological changes seen in mild and erosive esophagitis	
Fig. (6):	Complications of Erosive Esophagitis	24
Fig. (7):	Endoscopic image of the wireless pH capsule placed in the esophagus (BRAVO Capsule)	3
Fig. (8):	High-resolution manometry system including computer system that allows graphical display of tracings	t
Fig. (9):	Solid-state manometry catheter	28
Fig. (10):	High-resolution manometry catheter	29
Fig. (11):	Normal high-resolution manometry with impedance	
Fig. (12):	High resolution manometry of a GERD patient	
Fig. (13):	PillCam™ ESO and its ingestion protocol	

List of Figures

Figure No.	Title	Page
Fig. (14):	A: PillCam™ ESO image of erosive esophagitis; B: Upper endoscopy image of distal esophagus in the same patient	7 e
Fig. (15):	Diagram showing difference in Plasma Concentrations of Omeprazole between CYP2C19 Extensive and Poor Metabolizers	e r
Fig. (16):	Diagnostic features of Barrett's esophagus	
Fig. (17):	Endoscopic picture of Barrett's oesophagus	
Fig. (18):	Histopathology of Barrett's esophagus and stages of dysplastic disease (hematoxylin and eosin staining)	e
Fig. (19):	A brief algorithm for endoscopic surveillance and eradication therapy in patients with Barrett's esophagus.	7
Fig. (20):	Subsquamous intestinal metaplasia.	85
Fig. (21):	Showing comparison between the two group of patients as regard sex	
Fig. (22):	Showing comparison between the 2 groups of patients as regard age	
Fig. (23):	Comparison between the two groups of patients as regard IL4	
Fig. (24):	Comparison between the two groups as regard Endoscopy	

List of Figures

Figure No.	Title I	Page
Fig. (25):	Comparison between the two groups as regard Past medical history	. 103
Fig. (26):	Comparison between the two groups as regard Pathology	. 104
Fig. (27):	Relation between Pathology and IL4 in the group of GERD	. 107
Fig. (28):	Relation between Pathology and IL4 in the group of Refractory GERD	. 109
Fig. (29):	Relation between Pathology and past medical history in the group of GERD	. 111
Fig. (30):	Relation between Pathology and Endoscopy in the group of Refractory GERD	. 113
Fig. (31):	Relation between Pathology and past medical history in the group of Refractory GERD	. 114
Fig. (32):	ROC curve (Receiver operator characteristic curve); Accuracy (area under ROC curve) of Interleukin-4 among GERD and Refractory GERD	. 117
Fig. (33):	Cut off value of Interleukin-4 by sensitivity and specificity of GERD and Refractory GERD	. 118

INTRODUCTION

Gastroesophageal reflux disease (GERD) is one of the most prevalent gastrointestinal disorders, and its prevalence is increasing worldwide. It is a condition that develops by reflux of the stomach contents into the esophagus, and causes troublesome symptoms, such as heartburn and regurgitation (*Yu-Min et al., 2017*).

Heartburn and regurgitation are the cardinal and most common symptoms of GERD. They are the typical symptoms of GERD (*Orlando*, 2010).

GERD may manifest atypically with extraoesophageal symptoms as respiratory symptoms (cough, wheezes like asthma and recurrent upper respiratory tract infections), ENT symptoms (hoarseness of voice, globus sensation, postnasal drip, otitis media, dental erosions, sore throat, gingivitis, halitosis, aphthous ulcers and water brash), cardiac symptoms like pericordial or chest pain that may mimic anginal pain and multiple unexplained symptoms, which may be associated with psychological distress (*Richard et al.*, 2015).

Patients with GERD, especially with chronic disease, may present complications as esophagitis, Barrett's esophagus and peptic stricture (*Sudha et al.*, 2018).

Although PPIs are currently the most effective treatment for GERD and its complications, patients with nonerosive reflux disease (NERD) and patients with erosive esophagitis (EE) may remain symptomatic on standard therapy after 8 weeks of treatment. Patients with continued symptoms despite PPI treatment are considered to have refractory GERD (Mermelstein et al., 2018).

Recently refractory GERD is generally defined as the persistence of typical symptoms that do not respond to stable, twice-daily PPI dosing during at least 12 weeks of treatment. Up to 30% of GERD patients experience refractory GERD (Mermelstein et al., 2018).

There are many potential causes and factors related to refractory GERD that vary in incidence, clinical importance, and symptom severity and frequency. Poor compliance and adherence should first be assessed before further evaluation is decided. The most mechanisms for refractory GERD include functional bowel disorders, weakly acidic reflux, and residual acid. Factors related to metabolism and bioavailability play a limited role in PPI failure. GERD-like symptoms may also be due to a variety of other disorders, such as eosinophilic esophagitis (EoE), pill-induced esophagitis, infectious esophagitis, and achalasia, which should be considered in the differential of patients with unremitting symptoms diagnosis (Mermelstein et al., 2018).

Barrett's esophagus is the condition in which a metaplastic columnar mucosa replaces an esophageal squamous mucosa damaged by gastroesophageal reflux disease (GERD). Barrett's esophagus are major risk factors for esophageal adenocarcinoma (Stuart and Rhonda, 2014).

Cytokines are a peptide signaling molecules, play an important role in the damage of tissues and can demonstrate pro-inflammatory as well as anti-inflammatory activity (*Vladimir et al.*, 2015).

In addition to direct stimulation by intraluminal reflux contents, the esophageal epithelial layer is also exposed to factors produced by chronic inflammatory cells from the basal side (*Jing et al., 2016*).

Studies have shown an increase in proinflammatory TH1 cytokines in reflux esophagitis compared to BE, whereas TH2 cytokines are predominant in BE. There is increase in IL-4 in BE (*Jing et al., 2016*).

AIM OF THE WORK

The aim of this work is to evaluate the serum level of IL4 in patients with GERD and patients with refractory GERD.