

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

ELECTRONICS AND COMMUNICATIONS ENGINEERING DEPARTMENT

Slotted Optical Micro-Structures

A Thesis

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

Submitted by

Eng. Muhammad Abdulraouf Muhammad Othman

Supervised By

Prof. Dr. Diaa Abdel Meguid Khalil

Dr. Ismail Mohamed Nassar

Dr. Yasser Mohamed Sabry

Cairo, 2018

EXAMINERS COMMITTEE

Name: Muhammad Abdulraouf Muhammad Othman Thesis: **Slotted Optical Micro-Structures** Degree: Doctor of Philosophy in Electrical Engineering Title, Name and Affiliation **Signature** Prof. Dr. Kamel Mohamed Mahmoud Hassan (Examiner) **Future University** Faculty of Engineering, Electronics and Communications Engineering Department. Prof. Dr. Tarek Abdel Azim Mohamed Ramadan (Examiner) Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Department. Prof. Dr. Diaa Abdel Meguid Khalil (Supervisor) Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Department.

Date: 5th of September, 2018

Statement

STATEMENT

This dissertation is submitted to Ain Shams University for

the degree of Doctor of Philosophy in Electrical Engineering

(Electronics and Communications Engineering Department).

The work included in this thesis was carried out by the au-

thor at the Electronics and Communications Engineering Depart-

ment, Faculty of Engineering, Ain Shams University, Cairo,

Egypt.

No part of this thesis was submitted for a degree or a quali-

fication at any other university or institution.

Date: 5th of September, 2018

Name: Muhammad Abdulraouf Muhammad Othman

Signature:

vi

CURRICULUM VITAE

Name of Researcher Muhammad Abdulraouf Muhammad Othman

Date of Birth 16 November 1978

Place of Birth Cairo, Egypt

First University

Degree

B.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree 2001

Second University

Degree

M.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree 2008

M.Sc. Thesis Title

Integrated Optical Circuits for Optical Code-

Division Multiplexing (OCDM)

Current Job Senior Service Implementation Expert

(SSIE) in Orange Business Services (OBS),

Cairo, Egypt.

ACKNOWLEDGEMENT

الحمد لله رب العالمين

I'd like to present this work to my mother and my family who endured with me years of hard times and stressful moments. Without the continual support of my mother and her encouragement, this work would not have been realized in its final form.

The years of sharpening my scientific progress wouldn't have been bestowed on me without the support of Prof. Diaa Khalil, for 2 decades I learned so much from him through the graduation project, M.Sc. degree, and a variety of courses thought by him and from his guidance and supervision during my Ph.D. degree.

I would like to thank Dr. Yasser Sabry for his daily and continual support and for helping me during every step in my research journey, giving me much time that any supervisor may not offer to their students. His remarks and revisions helped me in many aspect of the production of this thesis. His meticulousness sharpened the edge of this thesis.

I would like to thank Dr. Ismail Nassar for guiding me at the start of the research and pointing out the point of research and his support in numerical analysis techniques and putting me on the road start.

I couldn't forget Prof. Mahmoud Hanafy who supported me by his advices whether scientific or life related during my presence in the LLOC (Lasers Laboratory for Optical Communications).

I'd like to show also my gratitude to the optical MEMS division in Si-Ware Systems for providing me with many facilities to complete this work. Despite they are still young researchers but I found in them talented minds and deep passion for being science scholars. I am speaking about Eng. Mohamed Sakr and Eng. Ahmed Othman. We spent much time discussing lots of mathematical and physical problems that was very fruitful for the research.

Muhammad Abdulraouf M. Othman Cairo, Egypt 5th of September, 2018

SUMMARY

Faculty of Engineering – Ain Shams University
Electronics and Communications Engineering
Department

Thesis Title: "Slotted Optical Micro-Structures"

Submitted by: Muhammad Abdulraouf Muhammad Othman

Degree: Doctor of Philosophy in Electrical Engineering

Micro-optical Fabry-Pérot filters are essential components for many applications in both the sensor and telecommunications domains. They can be built using the MEMS technology, which allows mass production, low cost and simple integration with many other components on a single chip. Such filters can be built using dielectric Bragg mirrors with relatively limited bandwidth, where the mirrors are required to be horizontal and the input light is vertical to the wafer, however, this does not allow for the mirror / filter integration with other components on the wafer. Vertical mirrors can be fabricated using either metallic coating or Si/air layered structures, however, metallic mirror does not allow for optical transmission and Si/air mirror could have a quite limited bandwidth. One of the solutions to build vertical mirrors with possibility of transmission is the structure of slotted metallic

mirror. Such structure allows for having the high mirror reflection coefficient and wide bandwidth of operation in addition to the ease of fabrication and compatibility with the MEMS technology. The objective of this work is the study of this slotted metallic vertical micro-mirror fabricated by the DRIE on a Si substrate. The thesis will develop modal technique for the prediction of the mirror performance under different polarization excitation. An analytical model is developed focusing on a limited number of generated modes in the slit. The model results are compared to the FDTD as well as the experimental results. A good agreement is obtained.

The mirror is then used to build a Fabry-Pérot resonator composed of a slotted micro mirror and a fiber coated with a multilayer coating to achieve high reflectivity to construct an optical filter. A theoretical model based on the Fourier optics analysis is used to predict the performance of this optical filter. The obtained results show also good agreement with the experimental results, when taking into account the uncertainties in the fabrication parameters.

The thesis is organized in six chapters as follows:

<u>Chapter 1:</u> gives a brief introduction to the motivation, objective, major contributions and organization of the thesis.

<u>Chapter 2:</u> presents the literature review on the different micromirror types used in the MEMS technology showing the advantages and disadvantages of these mirrors. This review is followed by a comparison between different types of mirrors. In addition, the theoretical background required for the understanding of the optical analysis used in the thesis is also introduced. This background includes a brief introduction to the Drude model for the metal losses, the Finite Difference Time Domain (FDTD) technique and the Fourier optics (FO) techniques for optical propagation in micro structures.

<u>Chapter 3:</u> provides an elaborate mathematical modeling for the slit transmittance. The solution provided in this chapter is based on solving the Eigen value problem (modal analysis) inside the inner boundaries of the slit for different excited modes (TE and TM). The mathematical expressions provided in this chapter using the modal analysis have closed forms and they are more accurate (when compared to FDTD results) than the scalar model that will be presented later in chapter 4, but it is more complicated.

<u>Chapter 4:</u> provides a study of the different parameters affecting transmittance of the newly presented optical slotted microstructure. Generally in literature, most of the focus is pointed towards metallic micromirrors with a vertical slit in subwavelength domain, but in our work we study the mirror beyond the subwavelength domain. A MEMS device with tunable slotted

micromirror is realized. The chapter ends with presenting the main technology used in fabrication of MEMS devices using deep reactive ion etching technology and a comparison between the FDTD results and practical measurement results.

<u>Chapter 5:</u> introduces one of the applications of the slotted micromirror in Fabry-Pérot filter construction. It starts with presenting the basic configuration of the Fabry-Pérot filter (resonator) and the idea of using such novel type of mirrors in the filter. Then a theoretical study based on Fourier optics (FO) is presented. The model surveys much of the simulation and physical properties of the filter. A comparison between the FO model results and the practical results is provided. The effect of varying the mirror slit width on resonator performance is demonstrated by fabricating and measuring micromirrors with different slit widths.

<u>Chapter 6:</u> gives a brief conclusion for the thesis and introduces several recommendations and suggestions for future work.

Keywords: Optical MEMS, Gaussian beam, Overlap integral, Parallel-plane waveguide, Micro-optical bench, Fourier Optics, Comb-drive actuator, SOI technology, Metallized mirrors, Tunable Finesse, Modal Analysis, Fabry-Pérot Cavity, and Tunable Finesse Resonator.

TABLE OF CONTENTS

E	kaminer	s Committee	iii
St	atemen	t	v
Cı	urriculu	m Vitae	vii
Α	cknowle	edgement	ix
Sı	ımmary		xii
Tá	able of (Contents	xvi
Li	st of Fig	ures	xix
Li	st of Tal	oles	xxvi
Li	st of Svi	nbols	xxvii
	•	tions	
		uction	
_			
		Motivation and objectives	
		Organization of the thesis	
_			
2	_	Micromirrors Prelude	
	2.1	Silicon on Insulator (SOI) technology	
		2.1.1 Photonic crystals micromirrors	
		2.1.2 MEMS micromirrors usage as in-plane switches2.1.3 Curved Micromirrors in Tunable Laser Integrated OADM	
		2.1.4 Micromirrors scanners	
		2.1.5 Discussion about different micromirror types	
	2.2	Parallel plate waveguide and slit modeling	
		2.2.1 TE modes of parallel plate waveguide	23
		2.2.2 TM modes of parallel plate waveguide	
		Light diffraction limit	
	2.4	Drude model	25
		Surface plasmon polaritons	
	2.6	Finite difference time domain simulations	30
	2.7	Fourier optics	32
	2.8	Summary	36
3	Modal	Analysis of Slotted Micromirror Response	37