PARALLELIZATION OF SEQUENTIAL COMPUTER
VISION ALGORITHMS ON BIG-DATA USING
DISTRIBUTED CHUNK-BASED FRAMEWORK

By

Norhan Magdi Sayed Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

PARALLELIZATION OF SEQUENTIAL COMPUTER
VISION ALGORITHMS ON BIG-DATA USING
DISTRIBUTED CHUNK-BASED FRAMEWORK

By

Norhan Magdi Sayed Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Hossam Aly Hassan Fahmy Dr. Mohamed Mohamed Rehan
Professor Chief Technology Officer

Electronics and Communications Engineering Department Avidbeam Technologies

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

PARALLELIZATION OF SEQUENTIAL COMPUTER
VISION ALGORITHMS ON BIG-DATA USING
DISTRIBUTED CHUNK-BASED FRAMEWORK

By

Norhan Magdi Sayed Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Dr. Hossam Aly Hassan Fahmy, Thesis Main Advisor

Dr. Mohamed Mohamed Rehan, Advisor
Chief Technical Officer, AvidBeam Technologies

Prof. Dr. Elsayed Eissa Abdo Hamyed, Internal Examiner

Prof. Dr. Khaled Mostafa Elsayed, External Examiner
Faculty of Computers and Information, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer’s Name: Norhan Magdi Sayed Osman

Date of Birth: 27/5/1990

Nationality: Egyptian

E-mail: nmbuckla@live.com

Phone: 01224209955

Address: 12D, Maadi Gardens Compound, Daary

Maadi, Katamya
Registration Date: 1/3/2014
Awarding Date: / /2018

Degree: Master of Science
Department: Electronics and Communications Engineering
Supervisors:

Prof. Dr. Hossam Aly Hassan Fahmy
Dr. Mohamed Mohamed Rehan

Examiners:

Prof. Dr. Hossam Aly Hassan Fahmy (Thesis Main advisor)
Dr. Mohamed Mohamed Rehan (Advisor)
Chief Technology Officer, AvidBeam
Prof. Dr. Elsayed Eissa Abdo Hamyed (Internal examiner)
Prof. Dr. Khaled Mostafa Elsayed (External examiner)
Faculty of Computers and Information,
Cairo University

Title of Thesis:

PARALLELIZATION OF SEQUENTIAL COMPUTER VISION
ALGORITHMS ON BIG-DATA USING DISTRIBUTED CHUNK-BASED
FRAMEWORK

Key Words:

BiG-Data; Computer Vision; Parallel Computing; Video Processing; Video-
Chunks

Summary:

In this thesis, we propose a complete framework that enables big-data frame-
works to run sequential computer vision algorithms in a scalable and parallel
way. Our idea is to divide the input video files into small chunks that can be
processed in parallel without affecting the quality of the resulting output. We
developed an intelligent data grouping that enables chunk-based framework
to distribute these data chunks among the available resources and gather the
results out of each chunk faster than the standalone sequential application.

Acknowledgements

I would like to thank my father, my husband and the rest of my family for being
patient and supportive during my MSc. period. They believed in me and encouraged me
to continue my work with endless love and understanding. I would also like to thank my
supervisors, Dr. Hossam Fahmy and Dr. Mohamed Rehan for their continuous support,
patience and guidance to me in order to enhance my work and correct my mistakes during
this thesis. I really want to thank all my colleagues at AvidBeam who stood beside me to
understand several computer vision basics and helped me to mature my developed work.
I would like to thank Dina Helal, Menna Ghoneim, Rana Morsi, Ahmed Hegazy, Eslam
Ahmed, Mickael Sedrak, Raghda Hassan and Afnan Hassan as well. Special thanks goes
to Dr. Hani El Gebaly, Hossam Sami and AvidBeam for providing support, time and
hardware capabilities to develop and test my proposed work and reach the final results.

Dedication

To the soul of my mother, I know your are proud of me.

11

Table of Contents

|Acknowledgements| i
Dedication ii
Table of Conten iii
[List of Tables| v
[List of Figures| vi
st of Abbreviations ix
X

xi

1

1

2

2

(1.2.2 Applications|. 4

(1.3 Problem Description| 6
(1.4 Challenges|. 7
(1.5 Thesis Organization| 7

2 BIG-DATA TECHNOLOGIES 9
9

10

10

11

15

16

2.3 ApacheSparkl 16
31 Overview| e 16

[2.3.2 Components and Cluster Architecture| 17

R33 Scheduled 20

234 Limitations e e e 21

2.4 Apache Storm| 22
41 Overview| 22

[2.4.2 Components and Cluster Architecture| 22

243 Scheduled 25

[2.4.4 Storm Stream Grouping|. 26

[2.5 Comparison between Big-Data Technologies|. 28
2.6 Conclusion| 29

11

3 LITERATURE REVIEW

4.3.1 Resources Calculation Unit (RCU)| 47
4.3.2 Data Splitting and Feed umit (DSFU), 54
4.3.3 Decision Making and Resources Mapping Unit (DMRMU)| 56

4.4 Proposed Framework Key Competencies| 61
61

5 EXPERIMENTAL RESULTS 63
63

[5.2 Evaluation Process Setup| 63
[5.2.1 HardwareSetup|., 63
[5.2.2 Storm Topology Structure| 63
0.2.3 FEvaluation Metrics| L Lo 66

0.3 Evaluation TestCases| 66
031 Video Summarizationl L 67

2 FaceD 100 .« v e e e e e e 70

[5.3.3 License Plate Recognition| 73
[3.3.4 Heatmaps| 75
[5.3.5 Testing multiple video files| 78

81

82

85

85

86

87

v

List of Tables

[2.1 Comparison between big-data technologies [17].. 28
[5.1 Storm configuration for automatic back pressure.[. 65
[5.2 Testing video specifications for each VP algorithm.| 66
[5.3 Video summarization algorithm evaluation metrics.| 68
[5>.4 Face detection algorithm evaluation metrics.| 71
[5.5 License plate recognition algorithm evaluation metrics.| 74
[5.6 Heatmaps algorithm evaluation metrics.| 77
[5.7 Multple files evaluation metrics.| 79
[5.8 Multiple files FPS metrics.| L. 79

List of Figures

[I.T Number of hours of uploaded videos to YouTube till July 2015. 4] 1
[[.2 Triple Vsofbig-data[9] 3
(1.3 Wikibons Big-data market forecast [12] 5
[2.1 Big-data processing steps [A1].|. 9
[2.2 HDES architecture with data replication [19]. | 11
2.3 HDFS abstract architecture of master and slave nodes.| 12
2.4 Hadoop mapreduce. | 13
[2.5 Hadoop simple working flow [24].|. 14
2.6 Hadoop YARN architecture [26].| 15
; par e 18
[2.8 Spark different deployment schemes [30]. | 18
2.9 Spark components. |o Lo Lo 19
[2.10 Spark cluster architecture. |o 20
[2.11 Representation of Storm topology containing spouts and bolts. | 23
212 Storm abstract architecture.] L L. 24
2.13 Storm workernode internals. |.o 00000 25
[2.14 Storm different stream grouping types [S2].| 27
[3.1 Computer vision steps sequence [S5].| 32
[3.2 Distributed stream processing [60]].| oL 34
(3.3 Distributed video transcoding abstract architecture [60].| 35
[3.4 Video transcoding using mapreduce-based cloud computing [61].[. 35
[3.5 Big-data video monitoring system based on Hadoop [64].[. 37
[3.6 Low-delay Video Transcoding initial topology [65].| 38
[3.7 Storm topology for scalable and intelligent real-time video surveillance |
framework [l67]].| 39

4.1 Storm topology for CV processing using DCB-Framework. |. 43
4.2 DCB-Framework architecture in Storm topology. | 46
4.3 The RCU block diagram. |. 48
4.4 The RCU steps to calculate number of frames and free resources. | 49
4.5 The RCU working steps to calculate actual chunk size. | 51
4.6 The RCU calculation of actual needed number of bolt instances. | 53
4.7 Sphtting video filesin DSFU.| 54

4.8 Illustration of video frames sequence consisting of I, P and B frames [/0].| 55
4.9 Sending chunks frames to spouts queue using parallel chunk-based splitting.| 55

4.10 DCB-Framework architecture in Storm topology. | 56
.11 Redis sample view of Assignment Map and Tasks Queuve. | 57
.12 Selecting Taskip for each video frame. | 60
[5.1 Storm slave machine components for VP.| 65
[5.2 Video Summarization algorithm output sample. | 68
[5.3 Total processing time of testing video for video summarization. | 69

vi

54

Processing time speed up of testing video for video summarization. | . . .

55

Complete latency of testing video for video summarization. |

56

Face detection algorithm output sample [81].|

5.7

Total processing time of testing video for face detection. |

538

Processing time speed up of testing video for face detection. |

5.9

Complete latency of testing video for face detection. |

5.10

LPR algorithm outputsample. |

5.1

Total processing time of testing video for license plate recognition. |

5.12

Processing time speed up of testing video for license plate recognition. |

5.13

Complete latency of testing video for license plate recognition. |.

5.14

Sample output of heatmaps algorithm. |.

5.15

Total processing time of testing video for heatmaps. |

5.16

Processing time speed up of testing video for heatmaps.|

5.17

Complete latency of testing video for heatmaps.

5.18

Total processing time for multiple files. |

5.19

Processing time speed up for multiple files. |

5.20

Complete latency for multiple files. |

vil

69
70
71
72
72
73
73
74
75
75
76

78

List of Abbreviations

AM Application Master

API Application programming interface
CNN Convolutional Neural Network

CpPU Central Processing Unit

Cv Computer Vision

DAG Direct Acyclic Graph
DCB-Framework Distributed Chunk-Based Framework
DBMS Database Management System
DSFU Data Splitting and Feed Unit
DMRMU Decision Making and Resources Mapping Unit
FIFO First In First Out

FPS Frames Per Second

GFS Googles File System

GPU Graphyical Prcoessing Unit

GOP Group of pictures

HDEFS Hadoop Distributed File system

JAR Java Archive

JVM Java Virtual Machine

LPR License Plate Recognition

MPEG Moving Picture Experts Group

NM Node Manager

NFS Network File Systems

OCR Optical Character Recognition
OpenCV Open Source Computer Vision Library
OpenMP Open Multi-Processing

(O Operating System

PC Personal Computer

QoS Quality of Service

RCU Resources Calculation Unit

viil

RDD
ROI
RTSP
SIMR
SQL
RM
Ul
VM
VP
YARN

Resilient Distributed Dataset
Region Of Interest

Real Time Streaming Protocol
Spark In MapReduce
Structured Query Language
Resource Manager

User Interface

Virtual Machine

Video Processing

Yet Another Resource Negotiator

X

Bolts
Executor
Kafka
Kestrel
MapReduce

Nimbus
Scheduler

Storm
Spouts
Supervisor
Thrift

Topology

Zookeeper

List of Terms

Data processing entities at Storm.

A thread runs at Storm worker process.

An open source stream processing tool.

A simple, distributed message queue system

Parallel data processing scheme with two stages: Map and
Reduce

A Java daemon runs at Storm master node.

An algorithm used to distribute processing resources on big-
data tools

An open source big-data tool

Storm data sources.

A Java daemon runs at Storm worker node

A software framework used for scalable cross-language ser-
vices development

A directed graph that connects Storm spouts and bolts to-
gether.

An entity that governs the communication between Storm

nimbus and supervisors

Abstract

The research presented in this thesis addresses the parallelization of sequential com-
puter vision algorithms, such as motion detection, tracking, etc., on big-data tools. Com-
puter vision sequential algorithms have restrictions on how the video frames should be
processed. In these algorithms, the inter-relation between successive frames is important
part of the algorithm sequence as the result of processing one video frame depends on the

result of the previous processed frame(s).

Most of the present big-data processing frameworks distribute the input data randomly
across the available processing units to utilize them efficiently and preserve working
load fairness. Therefore, the current big-data frameworks are not suitable for processing
video data with inter-frame dependency. When processing these sequential algorithms
on big-data tools, splitting the video frames and distributing them on the available cores
will not yield the correct output. Consequently, the advantage of the processing sequential
algorithms on big-data framework becomes limited only to certain cases where video

streams are coming from different input sources.

In this thesis, we propose a complete framework that enables big-data tools to execute
sequential computer vision algorithms in a scalable and parallel way with limited modifi-
cations. Our main objective is to parallelize the processing operation in order to speed up
the required processing time. The main idea is to divide the input big-data video files into
small chunks that can be processed in parallel without affecting the quality of the resulting
output. We have developed an intelligent data grouping algorithm that distributes these
data chunks among the available processing resources and gather the results out of each
chunk. A parallelized chunk-based data splitter was used to provide the input data chunks
concurrently for parallel processing. Then, our grouping algorithm makes sure that all
frames that belong to the same chunk are distributed in order to the associated processing

cores.

To evaluate the performance of the developed chunk-based framework, we conducted
several experimental tests. We used Apache Storm as our big-data framework for its real-
time performance. Storm framework was modified to support input video frame splitting
and parallel execution. We examined the behavior of our proposed framework against
different number of chunks over one hour testing videos. In our evaluation, we used several
sequential computer vision algorithms including face detection, video summarization,

license plate recognition (LPR), and heatmaps. Those algorithms were integrated into

X1

