

PARALLELIZATION OF SEQUENTIAL COMPUTER VISION ALGORITHMS ON BIG-DATA USING DISTRIBUTED CHUNK-BASED FRAMEWORK

By

Norhan Magdi Sayed Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

PARALLELIZATION OF SEQUENTIAL COMPUTER VISION ALGORITHMS ON BIG-DATA USING DISTRIBUTED CHUNK-BASED FRAMEWORK

By

Norhan Magdi Sayed Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Hossam Aly Hassan Fahmy Dr. Mohamed Mohamed Rehan

Professor

Chief Technology Officer Avidbeam Technologies

Electronics and Communications Engineering Department Faculty of Engineering, Cairo University

PARALLELIZATION OF SEQUENTIAL COMPUTER VISION ALGORITHMS ON BIG-DATA USING DISTRIBUTED CHUNK-BASED FRAMEWORK

By

Norhan Magdi Sayed Osman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Prof. Dr. Hossam Aly Hassan Fahmy, Thesis Main Advisor

Dr. Mohamed Mohamed Rehan, Advisor
Chief Technical Officer, AvidBeam Technologies

Prof. Dr. Elsayed Eissa Abdo Hamyed, Internal Examiner

Prof. Dr. Khaled Mostafa Elsayed, External Examiner
Faculty of Computers and Information, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Norhan Magdi Sayed Osman

Date of Birth: 27/5/1990 **Nationality:** Egyptian

E-mail: nmbuckla@live.com

Phone: 01224209955

Address: 12D, Maadi Gardens Compound, Daary

Maadi, Katamya

Registration Date: 1/3/2014 **Awarding Date:** //2018

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Hossam Aly Hassan Fahmy Dr. Mohamed Mohamed Rehan

Examiners:

Prof. Dr. Hossam Aly Hassan Fahmy

Dr. Mohamed Mohamed Rehan

Chief Technology Officer, AvidBeam

Prof. Dr. Elsayed Eissa Abdo Hamyed Prof. Dr. Khaled Mostafa Elsayed

Faculty of Computers and Information,

Cairo University

(Thesis Main advisor)

(Advisor)

(Internal examiner) (External examiner)

mation,

Title of Thesis:

PARALLELIZATION OF SEQUENTIAL COMPUTER VISION ALGORITHMS ON BIG-DATA USING DISTRIBUTED CHUNK-BASED FRAMEWORK

Key Words:

BiG-Data; Computer Vision; Parallel Computing; Video Processing; Video-Chunks

Summary:

In this thesis, we propose a complete framework that enables big-data frameworks to run sequential computer vision algorithms in a scalable and parallel way. Our idea is to divide the input video files into small chunks that can be processed in parallel without affecting the quality of the resulting output. We developed an intelligent data grouping that enables chunk-based framework to distribute these data chunks among the available resources and gather the results out of each chunk faster than the standalone sequential application.

Acknowledgements

I would like to thank my father, my husband and the rest of my family for being patient and supportive during my MSc. period. They believed in me and encouraged me to continue my work with endless love and understanding. I would also like to thank my supervisors, Dr. Hossam Fahmy and Dr. Mohamed Rehan for their continuous support, patience and guidance to me in order to enhance my work and correct my mistakes during this thesis. I really want to thank all my colleagues at AvidBeam who stood beside me to understand several computer vision basics and helped me to mature my developed work. I would like to thank Dina Helal, Menna Ghoneim, Rana Morsi, Ahmed Hegazy, Eslam Ahmed, Mickael Sedrak, Raghda Hassan and Afnan Hassan as well. Special thanks goes to Dr. Hani El Gebaly, Hossam Sami and AvidBeam for providing support, time and hardware capabilities to develop and test my proposed work and reach the final results.

Dedication

To the soul of my *mother*, I know your are proud of me.

Table of Contents

ACK	HOW	eugements	1			
Dedication						
Table of Contents						
List of Tables						
List	of F	gures	⁄i			
List	of A	bbreviations	X			
List	of T	erms	X			
Abs	trac	X	κi			
1 1 1 1 2 2 I	1.1 1.2 1.3 1.4 1.5	Motivation and Overview Introduction to Big-Data 1.2.1 Definition 1.2.2 Applications Problem Description Challenges Thesis Organization DATA TECHNOLOGIES Introduction Apache Hadoop 1.2.2.1 Overview 1.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	0			
	2.3 2.4	2.2.2 Components and Cluster Architecture 1 2.2.3 Scheduler 1 2.2.4 Limitations 1 Apache Spark 1 2.3.1 Overview 1 2.3.2 Components and Cluster Architecture 1 2.3.3 Scheduler 2 2.3.4 Limitations 2 Apache Storm 2 2.4.1 Overview 2 2.4.2 Components and Cluster Architecture 2 2.4.3 Components and Cluster Architecture 2	5 6 6 7 0 1 2 2			
	2.5 2.6	2.4.2 Components and Cluster Architecture 2 2.4.3 Scheduler 2 2.4.4 Storm Stream Grouping 2 Comparison between Big-Data Technologies 2 Conclusion 2	5 6 8			

3	LIT	ERATURE REVIEW	31
	3.1	Introduction	31
	3.2	Computer Vision and Video Processing Overview	31
	3.3	Previous Work	33
	3.4	Conclusion	39
4	DIS	TRIBUTED CHUNK-BASED BIG-DATA PROCESSING FRAMEWOR	K 41
	4.1	Introduction	41
	4.2	Basic Concept	41
	4.3	Architecture	45
		4.3.1 Resources Calculation Unit (RCU)	47
		4.3.2 Data Splitting and Feed unit (DSFU)	54
		4.3.3 Decision Making and Resources Mapping Unit (DMRMU)	56
	4.4	Proposed Framework Key Competencies	61
	4.5	Conclusion	61
5	EXI	PERIMENTAL RESULTS	63
	5.1	Introduction	63
	5.2	Evaluation Process Setup	63
		5.2.1 Hardware Setup	63
		5.2.2 Storm Topology Structure	63
		5.2.3 Evaluation Metrics	66
	5.3	Evaluation Test Cases	66
		5.3.1 Video Summarization	67
		5.3.2 Face Detection	70
		5.3.3 License Plate Recognition	73
		5.3.4 Heatmaps	75
		5.3.5 Testing multiple video files	78
	5.4	Results Observations	81
	5.5	Conclusion	82
6	CO	NCLUSION AND FUTURE WORK	85
	6.1	Conclusion	85
	6.2	Future Work	86
Re	eferer	aces	87

List of Tables

2.1	Comparison between big-data technologies [17]	28
5.1	Storm configuration for automatic back pressure	65
5.2	Testing video specifications for each VP algorithm	66
5.3	Video summarization algorithm evaluation metrics	68
5.4	Face detection algorithm evaluation metrics	71
5.5	License plate recognition algorithm evaluation metrics	74
5.6	Heatmaps algorithm evaluation metrics	77
5.7	Multiple files evaluation metrics	79
5.8	Multiple files FPS metrics	79

List of Figures

1.1	Number of hours of uploaded videos to YouTube till July 2015. [4]	1
1.2	Triple Vs of big-data [9]	3
1.3	Wikibons Big-data market forecast [12]	
2.1	Big-data processing steps [11]	9
2.2	HDFS architecture with data replication [19]	11
2.3	HDFS abstract architecture of master and slave nodes	12
2.4	Hadoop mapreduce	13
2.5	Hadoop simple working flow [24]	14
2.6	Hadoop YARN architecture [26]	15
2.7	Spark DAG	18
2.8	Spark different deployment schemes [30]	18
2.9	Spark components	19
2.10	Spark cluster architecture	20
2.11	Representation of Storm topology containing spouts and bolts	23
	Storm abstract architecture	24
	Storm worker node internals	25
2.14	Storm different stream grouping types [52]	27
3.1	Computer vision steps sequence [55]	32
3.2	Distributed stream processing [60]	34
3.3	Distributed video transcoding abstract architecture [60]	35
3.4	Video transcoding using mapreduce-based cloud computing [61]	35
3.5	Big-data video monitoring system based on Hadoop [64]	37
3.6	Low-delay Video Transcoding initial topology [65]	38
3.7	Storm topology for scalable and intelligent real-time video surveillance	
	framework [67]	39
4.1	Storm topology for CV processing using DCB-Framework	43
4.2	DCB-Framework architecture in Storm topology	46
4.3	The RCU block diagram	48
4.4	The RCU steps to calculate number of frames and free resources	49
4.5	The RCU working steps to calculate actual chunk size	51
4.6	The RCU calculation of actual needed number of bolt instances	53
4.7	Splitting video files in DSFU	54
4.8	Illustration of video frames sequence consisting of I, P and B frames [70].	55
4.9	Sending chunks frames to spouts queue using parallel chunk-based splitting.	55
4.10	DCB-Framework architecture in Storm topology	56
4.11	Redis sample view of Assignment Map and Tasks Queue	57
4.12	Selecting Task _{ID} for each video frame.	60
5.1	Storm slave machine components for VP	65
5.2	Video Summarization algorithm output sample	68
5.3	Total processing time of testing video for video summarization	69

5.4	Processing time speed up of testing video for video summarization	69
5.5	Complete latency of testing video for video summarization	70
5.6	Face detection algorithm output sample [81]	71
5.7	Total processing time of testing video for face detection	72
5.8	Processing time speed up of testing video for face detection	72
5.9	Complete latency of testing video for face detection	73
5.10	LPR algorithm output sample	73
5.11	Total processing time of testing video for license plate recognition	74
5.12	Processing time speed up of testing video for license plate recognition	75
5.13	Complete latency of testing video for license plate recognition	75
5.14	Sample output of heatmaps algorithm	76
5.15	Total processing time of testing video for heatmaps	77
5.16	Processing time speed up of testing video for heatmaps	78
5.17	Complete latency of testing video for heatmaps	78
5.18	Total processing time for multiple files	80
5.19	Processing time speed up for multiple files	80
5.20	Complete latency for multiple files	81

List of Abbreviations

AM Application Master

API Application programming interface
CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

DAG Direct Acyclic Graph

DCB-Framework Distributed Chunk-Based Framework

DBMS Database Management System
DSFU Data Splitting and Feed Unit

DMRMU Decision Making and Resources Mapping Unit

FIFO First In First Out
FPS Frames Per Second
GFS Googles File System

GPU Graphyical Precessing Unit

GOP Group of pictures

HDFS Hadoop Distributed File system

JAR Java Archive

JVM Java Virtual Machine

LPR License Plate Recognition

MPEG Moving Picture Experts Group

NM Node Manager

NFS Network File Systems

OCR Optical Character Recognition

OpenCV Open Source Computer Vision Library

OpenMP Open Multi-Processing

OS Operating System
PC Personal Computer
QoS Quality of Service

RCU Resources Calculation Unit

RDD Resilient Distributed Dataset

ROI Region Of Interest

RTSP Real Time Streaming Protocol

SIMR Spark In MapReduce

SQL Structured Query Language

RM Resource Manager
UI User Interface
VM Virtual Machine
VP Video Processing

YARN Yet Another Resource Negotiator

List of Terms

Bolts Data processing entities at Storm.

Executor A thread runs at Storm worker process.

Kafka An open source stream processing tool.

Kestrel A simple, distributed message queue system

MapReduce Parallel data processing scheme with two stages: Map and

Reduce

Nimbus A Java daemon runs at Storm master node.

Scheduler An algorithm used to distribute processing resources on big-

data tools

Storm An open source big-data tool

Spouts Storm data sources.

Supervisor A Java daemon runs at Storm worker node

Thrift A software framework used for scalable cross-language ser-

vices development

Topology A directed graph that connects Storm spouts and bolts to-

gether.

Zookeeper An entity that governs the communication between Storm

nimbus and supervisors

Abstract

The research presented in this thesis addresses the parallelization of sequential computer vision algorithms, such as motion detection, tracking, etc., on big-data tools. Computer vision sequential algorithms have restrictions on how the video frames should be processed. In these algorithms, the inter-relation between successive frames is important part of the algorithm sequence as the result of processing one video frame depends on the result of the previous processed frame(s).

Most of the present big-data processing frameworks distribute the input data randomly across the available processing units to utilize them efficiently and preserve working load fairness. Therefore, the current big-data frameworks are not suitable for processing video data with inter-frame dependency. When processing these sequential algorithms on big-data tools, splitting the video frames and distributing them on the available cores will not yield the correct output. Consequently, the advantage of the processing sequential algorithms on big-data framework becomes limited only to certain cases where video streams are coming from different input sources.

In this thesis, we propose a complete framework that enables big-data tools to execute sequential computer vision algorithms in a scalable and parallel way with limited modifications. Our main objective is to parallelize the processing operation in order to speed up the required processing time. The main idea is to divide the input big-data video files into small chunks that can be processed in parallel without affecting the quality of the resulting output. We have developed an intelligent data grouping algorithm that distributes these data chunks among the available processing resources and gather the results out of each chunk. A parallelized chunk-based data splitter was used to provide the input data chunks concurrently for parallel processing. Then, our grouping algorithm makes sure that all frames that belong to the same chunk are distributed in order to the associated processing cores.

To evaluate the performance of the developed chunk-based framework, we conducted several experimental tests. We used Apache Storm as our big-data framework for its real-time performance. Storm framework was modified to support input video frame splitting and parallel execution. We examined the behavior of our proposed framework against different number of chunks over one hour testing videos. In our evaluation, we used several sequential computer vision algorithms including face detection, video summarization, license plate recognition (LPR), and heatmaps. Those algorithms were integrated into