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Summary:

In this thesis, we propose a complete framework that enables big-data frame-
works to run sequential computer vision algorithms in a scalable and parallel
way. Our idea is to divide the input video files into small chunks that can be
processed in parallel without affecting the quality of the resulting output. We
developed an intelligent data grouping that enables chunk-based framework
to distribute these data chunks among the available resources and gather the
results out of each chunk faster than the standalone sequential application.
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Abstract

The research presented in this thesis addresses the parallelization of sequential com-
puter vision algorithms, such as motion detection, tracking, etc., on big-data tools. Com-
puter vision sequential algorithms have restrictions on how the video frames should be
processed. In these algorithms, the inter-relation between successive frames is important
part of the algorithm sequence as the result of processing one video frame depends on the

result of the previous processed frame(s).

Most of the present big-data processing frameworks distribute the input data randomly
across the available processing units to utilize them efficiently and preserve working
load fairness. Therefore, the current big-data frameworks are not suitable for processing
video data with inter-frame dependency. When processing these sequential algorithms
on big-data tools, splitting the video frames and distributing them on the available cores
will not yield the correct output. Consequently, the advantage of the processing sequential
algorithms on big-data framework becomes limited only to certain cases where video

streams are coming from different input sources.

In this thesis, we propose a complete framework that enables big-data tools to execute
sequential computer vision algorithms in a scalable and parallel way with limited modifi-
cations. Our main objective is to parallelize the processing operation in order to speed up
the required processing time. The main idea is to divide the input big-data video files into
small chunks that can be processed in parallel without affecting the quality of the resulting
output. We have developed an intelligent data grouping algorithm that distributes these
data chunks among the available processing resources and gather the results out of each
chunk. A parallelized chunk-based data splitter was used to provide the input data chunks
concurrently for parallel processing. Then, our grouping algorithm makes sure that all
frames that belong to the same chunk are distributed in order to the associated processing

cores.

To evaluate the performance of the developed chunk-based framework, we conducted
several experimental tests. We used Apache Storm as our big-data framework for its real-
time performance. Storm framework was modified to support input video frame splitting
and parallel execution. We examined the behavior of our proposed framework against
different number of chunks over one hour testing videos. In our evaluation, we used several
sequential computer vision algorithms including face detection, video summarization,

license plate recognition (LPR), and heatmaps. Those algorithms were integrated into

X1



