The Anti-Mullerian hormone as a predictor of intracytoplasmic sperm injection outcome in patients with polycystic ovary syndrome

Thesis submitted for partial fulfillment of the M.D. degree In Obstetrics & Gynecology

BY

Walid El-Sayed Elnagar

Assistant lecturer of Obstetrics & Gynecology Faculty of Medicine, Al-Azhar University

Under Supervision of

Dr. Abd Elmoneim Mohammad Farag

Professor of Obstetrics & Gynecology Faculty of Medicine, Al-Azhar University

Dr. Khaled Zakaria Elsheikha

Professor of Obstetrics & Gynecology Faculty of Medicine, Al-Azhar University

Dr. Aida Mohammad Ibrahim

Professor of Clinical Pathology
Faculty of Medicine, Al-Azhar University

Dr. Mohammad Saleh Nawarah

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine, Al-Azhar University

Dr. Adel El-Sayed Ibrahim

Assistant Professor of Obstetrics & Gynecology International Islamic Center for Population Studies and Research (IICPSR), Al-Azhar University

Faculty of Medicine- Al-Azhar University 2014

الهرمون المضاد لعامل موليريان كمؤشرلنتائج الحقن المجهرى في المرضى المصابات بملازمة تكيس المبيض

رسالة توطئة للحصول على درجة الدكتوراه في التوليد وأمراض النساء

مقدمة من

الطبيب/ وليد السيد النجار

بكالوريوس الطب والجراحة - ماچستير التوليد وأمراض النساء مدرس مساعد بقسم التوليد وأمراض النساء -كلية الطب- جامعة الأزهر

تدت إشراف

د عبدالمنعم محمد فرج

أستاذ التوليد وأمراض النساء كلية الطب – جامعة الأز هر

د. خالد زكريا الشيخة

أستاذ التوليد وأمراض النساء كلية الطب – جامعة الأزهر

د عايدة محمد إبراهيم

أستاذ الباثولوجى الإكلينيكى كلية الطب – جامعة الأز هر

د. محمد صالح نوارة

أستاذ مساعد التوليد وأمراض النساء كلية الطب - جامعة الأزهر

د. عادل السيد إبراهيم

أستاذ مساعد التوليد وأمراض النساء المركز الإسلامي الدولي للأبحاث و الدراسات السكانية جامعة الأزهر

كلية الطب -جامعة الأزهر

Acknowledgements

First and foremost I feel always indebted to ALLAH, the Most Beneficent and Merciful.

I would first like to express my unlimited gratitude and thankfulness to **Dr. Abd Elmoneim Mohammad Farag** Professor of Obstetrics and Gynecology, Faculty of Medicine, Al-Azhar University, for his acceptance to supervise my work and for his continuous support, his valuable advises and encouragement without his encourage and help I would not have been able to finish this work.

Many thanks to **Dr. Khaled Zakaria Elsheikha** Professor of Obstetrics and Gynecology, Faculty of Medicine, Al-Azhar University for his keen supervision and his continuous wise guidance and fruitful criticism which have been of great help in presenting this work in forceful form.

My deepest gratitude and appreciation are to **Dr. Aida Mohammad Ibrahim** Professor of Clinical Pathology, Faculty of Medicine, Al-Azhar University, who showed me the way and the first steps for going on into this work, who helped me much and his continuous guidance.

I am greatly honored to express my gratitude to **Dr. Mohammad Saleh Nawarah** assistant Professor of Obstetric and Gynecology, Faculty of Medicine, Al-Azhar University, for his valuable direction, encouragement and scientific supervision.

I am deeply grateful to **Dr. Adel El-Sayed Ibrahim**, Assistant Professor of Obstetrics and Gynecology, International Islamic Center for Population Studies and Research (IICPSR), Al-Azhar University, for his generous help and valuable comments during the preparation of this work.

Lastly I feel thankful to my parents, my wife and every person who helped me and illuminated the way for performing this work.

List of Contents

	Page
Introduction	1
Aim of the Work	4
Review of Literature:-	
Polycystic ovary syndrome	5
> Historical consideration	5
> Prevalence	6
> Diagnosis	8
> Pathophysiology	10
> Clinical features of PCOS	21
> Laboratory evaluation	29
> Management	32
OVARIAN RESERVE	52
> Introduction	52
> Assessment of ovarian reserve	54
> Static tests	54
> Dynamic tests	65
> Antimüllerian hormone	67

ICSI	78
> Introduction	78
> Indication	78
> Oocyte handling prior to microinjection	79
> Sperm handling prior to microinjection	97
> Outcome parameters of ICSI	98
> Embryo transfer	100
➤ Management of the luteal Phase	103
Patients and Methods Results	
Discussion	133
Summary	145
Conclusion and Recommendations	151
References	152
Arabic Summary	••••

List of figure

figure no.	Details	Page no.
REVIEW	I	
1	Aetiology and clinical features of polycystic ovary syndrome	10
2	ovarian theca cells respond to luteinizing hormone (LH) by increasing androgenic precursor output	11
3	The two hit hypothesis of polycystic ovary syndrome	13
4	insulin resistance leads to hepatic overproduction of apoB and VLDL	19
5	Shown more than 12 ovarian cysts of 2 mm to 5 mm in diameter spanning the perimeter of the left and right ovaries	27
6	AMH produced by granulose cells from primordial follicle	69
7	correlation between serum AMH and age	70
8	Human prezygote with two pronuclei on day 1	98
МЕТНО	DOLOGY	
9	Oocyte grading	112
10	Oocyte 16-18h after insemination	114
11	Grading of embryos 48h after insemination	115
RESULT	'S	
12	Pie chart for the distribution of studied cohort by response.	120
13	Hormonal profiles and antral follicle count (AFC) of the studied poor and normal responders	122

14	Poor response and Normal response in low, moderate and high	123
	level of serum AMH groups	
15	Pie chart for the distribution of normal responders by pregnancy	124
	outcome	
16	Hormonal profiles and antral follicle count (AFC) of the studied	126
	positive and negative pregnancy in the studied normal responders	
17	Pregnancy rate in low, moderate and high level of serum AMH	127
	groups.	
18	Distribution of normal responders by pregnancy outcome (Oocyte	129
	number, fertilized embryo, grade A embryo and number of embryo	
	transfer)	
19	Correlations between serum AMH (ng /ml) and the age in low, moderate	130
	and high level of serum AMH groups.	
1		

List of Tables

Table no.	Details	Page no.
REVIEW		
1	Commonly used definition of polycystic ovary syndrome	8
2	Interpretations of 2-hour glucose test	31
3	Markers of ovarian reserve	54
4	Interpretation day 3 level of FSH according to Advanced Fertility	56
	Center of Chicago reports	
METHO	DOLOGY	
5	Oocyte grading	110
RESULTS		
6	Causes of cycle cancellation in the study cohort	120
7	Distribution of the studied poor and normal responders by	121
	demographical and clinical parameters.	
8	Poor response and Normal response in low, moderate and high	123
	level of serum AMH groups.	
9	Distribution of normal responders by pregnancy outcome	124
10	Age and BMI and duration of infertility distribution of the studied	125
	normal responders by pregnancy outcome.	

11	Hormonal profiles and antral follicle count (AFC) of the studied positive and negative pregnancy in the studied normal responders	125
12	Pregnancy rate in low, moderate and high level of serum AMH groups.	126
13	Gonadotropine (Gn) days, dose, follicle number, and E2 hCG in the studied normal responders by pregnancy outcome.	127
14	Distribution of normal responders by pregnancy outcome (Oocyte number, fertilized embryo, grade A embryo and number of embryo transfer)	128
15	Correlations between serum AMH (ng /ml) and (age, BMI).	129
16	Correlations between serum AMH (ng /ml) and the age in low, moderate and high level of serum AMH groups.	130
17	Correlations between serum AMH (ng /ml) and hormonal profile and AFC.	131
18	Correlations between serum AMH (ng /ml) and AFC in low, moderate and high level of serum AMH groups.	131
19	Correlations between serum AMH (ng /ml) and (E2 at hCG, No. Ampoule, Oocyte number, No. of Total of embryos, No. of grade A embryos and No. of transferred embryos).	132

3D Three Dimension

17α-HP 17 (Alpha) Hydroxyprogesterone

ACTH Adrenocorticotropic Hormone

AES Androgen Excess Society

AFC Antral Follicle Count

Als Aromatase Inhibitors

AMH Anti-Müllerian Hormone

Apo B Apolipoprotein B

AR Androgen Receptor

Arts Assisted Reproductive Techniques

BMI Body Mass Index

Bmps Bone Morphogenetic Proteins

CAH Congenital Adrenal Hyperplasia

CBAVD Congenital Bilateral Absence Of The Vas Deferens

CC Clomiphene Citrate

CCCT Clomiphene Citrate Challenge Test

COH Controlled Ovarian Hyperstimulation

CVD Cardiovascular Disease

DET Double Embryo Transfer

DHEA-S Dehydroepiandrosterone-Sulfate

DM2 Diabetes Mellitus Type 2

E2 Estradiol

EFFORT Exogenous FSH Ovarian Reserve Test

ER Estrogen Receptors

ESHRE/ASRM European Society For Human Reproduction And Embryology And American Society For Reproductive Medicine

ET Embryo Transfer

Ffas Free Fatty Acides

FSH Follicle Stimulating Hormone

GAST GnRh Agonist Stimulation Test

Gcs Granulosa Cells

GDM Gestational Diabetes

GH Growth Hormone

Gnrh Gonadotrophin Releasing Hormone

Gnrha Gonadotrophin Releasing Hormone Agonist

GWAS Comprehensive Genome-Wide Association Studies

HCG Human Chorionic Gonadotropin

HDL-C High-Density Lipoprotein Cholesterol

HMG Human Menopausal Gonadotropin

HPA Hypothalamic–Pituitary–Adrenal

HPO Hypothalamic-Pituitary-Ovarian

ICSI Intracytoplasmic Sperm Injection

IGFBP-1 Insulin Growth Factor Binding Protein-1

IGF-I Insulin-Like Growth Factor-I

IGT Impaired Glucose Tolerance

IICPRS International Islamic Center For Population Researches And Studies

IM Intramuscular

IRs Insulin Receptors

IUI Inrta Uterine Insemination

IVF In Vitro Fertilization

LDL-C Low-Density Lipoprotein Cholesterol

LGA Large For Gestational Age

LH Luteinizing Hormone

LOD Laparoscopic Ovarian Drilling

LOS Laparoscopic Ovarian Surgery

LPL Lipoprotein Lipase

MRI Magnetic Resonance Imaging

NCAH Non-Classical Adrenal Hyperplasia

NIEHS National Institute Of Environmental Health Sciences

NIH National Institutes Of Health

OA Ovarian Area

Ocps Oral Contraceptive Pills

OHSS Ovarian Hyperstimulation Syndrome

OPU Ovum Pickup

OR Ovarian Reserve

PCOS Polycystic Ovary Syndrome

PGD Preimplantation Genetic Diagnosis

PI Pulsatility Index

PN Pronuclei

PSV Peak Systolic Velocity

PVP Polyvinyl Pyrrolidone

PZD Partial Zona Dissection

RCT Randomized Controlled Trials

rFSH Recombinant FSH

RI Resistance Index

SET Single Embryo Transfer

SGA Small for Gestational Age

SHBG Sex Hormone Binding Globulin

SUZI Subzonal Insemination

TGFb Transforming Growth Factor-b

TSH Thyroid Stimulating Hormone

TVOD Transvaginal Ovarian Drilling

TV-US Transvaginal Ultrasound

VEGF Vascular Endothelial Growth Factor

VLDL Very Low-Density Lipoprotein

WHO World Health Organization