

EXPERIMENTAL STUDY ON BIO-INSPIRED WINGS WITH TUBERCLES

By

MOHAMAD AHMED ABDEL-RAHIM DESOKY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

EXPERIMENTAL STUDY ON BIO-INSPIRED WINGS WITH TUBERCLES

By

MOHAMAD AHMED ABDEL-RAHIM DESOKY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Approved by the
Examining Committee

Prof. Dr. Gamal Mahmoud Sayed El-Bayoumi, Thesis Main Advisor

Prof. Dr. Basman Mohamad El-Hadidi, Advisor

Prof. Dr. Mohamad Madboli Abdel-Rahman, Internal Examiner

Prof. Dr. Omar Al-Farouk Abdel-Hamid, External Examiner

Prof. Dr. Omar Al-Farouk Abdel-Hamid, External Examiner Professor of Aerodynamics at the Military Technical College

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer's Name: Mohamad Ahmad Abdel-Rahim Desoky

Date of Birth: 12/08/1983 **Nationality:** Egyptian

E-mail: mohamadshorbagy@gmail.com

Phone: (002) 01063479423

Address: 09/119, AlAshgar Dist., 6th October City

Registration Date: 01/10/2013

Awarding Date: 2018

Degree: Master of Science

Department: Aerospace Engineering

Supervisors: Prof. Gamal Mahmoud Sayed El-Bayoumi

Prof. Basman Mohamad El-Hadidi

Dr. Osama Said

Examiners: Prof. Omar Al-Farouk Abdel-Hamid (External Examiner)

Professor of Aerodynamics at the Military Technical College
Prof. Mohamad Madboli Abdel-Rahman (Internal Examiner)
Prof. Gamal Mahmoud Sayed El-Bayoumi (Thesis Main Advisor)

Prof. Basman Mohamad El-Hadidi (Advisor)

Title of Thesis:

Experimental Study on Bio-Inspired Wings with Tubercles

Key Words:

Sinusoidal leading-edge wing; Wings with tubercles; Wavy leading-edge wings; Humpback whale flipper.

Summary:

This work aims to answer some questions about the humpback whale flipper with its ability to delay stall and enhance post stall performance. A series of wind tunnel tests on 14 different wings with NACA 0021 profile and with different leading-edges are performed. The tests were divided into two groups: one of aspect ratio 7 which is as a convenient representative to a conventional airplane's wing, and the other group is with aspect ratio 2 as a convenient representative of a control surface aspect ratio or a MAV wing. These experiments led to the discovery of a wing leading-edge geometry constructed with peaks of the sine wave that proved to reduce the drag coefficient up to 28% and increase the lift to drag ratio up to 48% relative to its comparable sinusoidal wing. They also led to suggesting an additional design parameter that should be included in the design process to maximize the aerodynamic gains of the wings with tubercles which is the peak (or trough) width.

EXPERIMENTAL STUDY ON BIO-INSPIRED WINGS WITH TUBERCLES

By

Mohamad Ahmed Abdel-Rahim Desoky

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Under the Supervision of

Prof. Gamal Mahmoud Sayed El-Bayoumi

Professor of Aircraft Flight Mechanics & Control
Aerospace Engineering Department, Faculty of Engineering, Cairo University

Prof. Basman Mohamad El-Hadidi

Professor of Aerodynamics
Aerospace Engineering Department, Faculty
of Engineering, Cairo University
Senior Lecturer of Aerodynamics, Nanyang
Technological University

Dr. Osama Said

Assistant Professor of Aircraft Flight Mechanics & Control Aerospace Engineering Department, Cairo University

Acknowledgements

I would like to express my deepest gratitude to my supervisor professor Gamal El-Bayoumi for his great support during this work and for his encouraging words that kept me going. With the work is all done now, I realize that the best part of it was getting closer to such a great man as a professor and as a person.

I take this opportunity to express my deep appreciation to Professor Basman El-Hadidi for his close supervision, continuous follow up and fruitful discussions since the ideas contained in this work were still starting to form till the very end.

I also thank Dr. Osama Said for his encouragement during the tests and his patience driven by his experimental experience and his deep understating of the time and effort needed to get accurate and reliable results.

To my dear friend engineer Moatassem Fouda, I express my deepest gratitude for his exceptional guidance in the mechanical design and manufacturing part of this work that was not only restricted to discussions but also we shared his room/workshop assembling the parts. Without his help, this whole part would have been compromised and to him I owe a lot.

To my parents, I owe my passion for Engineering and Science in general and for everything they did to me and to my sister, I feel there is no word of gratitude can express my feelings for them.

I thank my beloved wife Nouran for her patience even through the hard times when I used to spend the whole day testing then come back showering her with engineering thoughts that she gladly listened to. For her listening, I am grateful.

I thank my beloved little daughter Farida whose smile offers me something to come home to. My candle on the road indeed.

Dedication

Dedicated with Love to the Memory of Dr. Ahmed Khaled Tawfik

Table of Contents

Ackno	wledge	ements	i
Dedica	tion		ii
Table o	of Con	itents	iii
List of	Table	S	vi
List of	Figur	es	vii
Nomen	clatuı	re	ix
Abstra	ct		xi
Chapte	er 1: I	ntroduction	1
1.1	Hun	npback Whale	1
1.2		lications	
1.3		sis Objectives	
		•	
1.4	Ines	sis Layout	3
Chapte	er 2: 1	Literature Survey	6
2.1	Nun	nerical Studies	6
2.2	Expe	erimental Studies	7
Chapte	er 3: V	Vind Tunnel Setup	11
3.1	Intro	oduction	11
3.2	Win	d Tunnel	12
3.3		g Models	
	`	ti-Axis Load Cell	
3.4	.4.1	Two-Axis Load Cell	
_	.4.2	Three-Axis Load Cell	
3	.4.3	Three-Axis Load Cell Upgradable to Five-Axis Load Cell	
	.4.4	Five-Axis Load Cell	
3	.4.5	Load Cells Calibration	15
3.5	Pitch	h Control Device	16
3.6	Win	g Installation, Experiment Alignment & Force Calculation	17
3.7	-	a Collection	
Chapte	er 4: E	Experimental Methodology	19
4.1	Intro	oduction	19
4.2	Wind	d Tunnel Corrections	19
4	.2.1	Horizontal Buoyancy	
4	.2.2	Solid Blockage	19
	.2.3	Wake Blockage	
	.2.4	Streamline Curvature	
	.2.5	Normal Downwash Change	
	.2.6	Spanwise Downwash Distortion	
4.3	Resu	ults of Wind-tunnel Corrections	23

4.3.1	Verification Case	
4.3.2	Wings of Aspect Ratio 7	24
4.3.3	Wings of Aspect Ratio 2	24
4.4 Ana	lysis of the Uncertainty	24
4.4.1	Statistical Uncertainty	
4.4.2	Measurement Uncertainty	
4.4.3	Uncertainty in Angle of Attack	
4.4.4	Uncertainty of Load Cell	
4.4.5	Uncertainty in Free-Stream Velocity	
4.4.6	Combined Uncertainty	
	fication Case Results	
4.5 Veri	fication Case Results	29
Chapter 5: F	Results and Discussion	30
5.1 Win	gs under Test	30
5.1.1	Straight7	
5.1.2	S7	
5.1.3	P7	
5.1.4	S7hAhW	
5.1. 4 5.1.5	Swept7	
	E7 (1:1)	
5.1.6		
5.1.7	E7 (2:1)	
5.1.8	SLPT7	
5.1.9	Straight2	
5.1.10	S2	
5.1.11	P2	34
5.1.12	SLPT2	34
5.1.13	SLT2	34
5.1.14	T2	35
5.2 Aspe	ect Ratio 7 Wings Results	35
5.2.1	A.R 7 Wings Aerodynamic Performance	35
5.2.2	P7 vs S7hAhW	38
5.2.3	E7 (2:1) vs E7 (1:1)	
5.2.4	Summary of $AR = 7$ Wings Comparative Results	
5.3 Aspe	ect Ratio 2 Wings Results	41
5.3.1	Aerodynamic Performance, $AR = 2$, Re 174,000	
5.3.2	S2 vs Straight2, AR=2, Re 174,000	
5.3.3	P2 vs S2, AR = 2, Re 174,000	
5.3.4	$T2 \text{ vs } S2, AR = 2, Re = 174,000 \dots$	
5.3.5	SLPT2 vs S2, $AR = 2$, $Re = 174,000$	
	SLPT2 vs S2, $AR = 2$, $Re = 174,000$	
5.3.6		
5.3.7	SLT2 vs S2, $AR = 2$, $Re = 174,000$	
5.3.8	SLT2 vs SLPT2, $AR = 2$, $Re = 174,000$	
5.3.9	Aerodynamic Performance, $AR = 2$, $Re = 120,000$	
5.3.10		
	Effect on AR = 2 Wings Comparative Performance	
5.5 Re l	Effect on the Performance of Each AR = 2 Wing	
5.5.1	Re Effect on S2	54
5.5.2	Re Effect on P2	55
5.5.3	Re Effect on Straight2	
5.5.4	Re Effect on SLPT2	
5.5. 5	Re Effect on SLT2 Wing	
5.5.6	Re Effect on T2	
Chapter 6: C	Conclusions and Recommendations	61
61 Con	clusions	61

6.2 Recommendations	62
References	63
Appendix A: Uncertainty Contributions	67
Appendix B: Wing Planforms	71
Appendix C: Pitch Control Device and Load Cell Mechanical Drawings	75
Appendix D: Experiments Tabulated Results	93

List of Tables

Table 4.1: Estimation of degrees of freedom for measurement uncertainties	27
Table 4.2 : Values of k_i , v_i for measurement uncertainty analysis	27
Table 4.3: Nomenclature for Figure 4.2.	28
Table 5.1: Nomenclature for wings under test	31
Table 5.2 : Summary of $AR = 7$ Results	41
Table 5.3 : Re Effect on $AR = 2$ Wings Comparative Performance	53
Table 5.4: Re Effect on $AR = 2$ Wings, for Points of Maximum Percentage different	nce60

List of Figures

Figure 1.1: A picture of Humpback Whale	1
Figure 1.2: A picture of a Scalloped wing leading edge concept	2
Figure 1.3: A picture of WhalePower	3
Figure 1.4: A picture of Dewar's tubercled rotor blade concept	3
Figure 1.5: A picture of a spoked wheel concept	4
Figure 2.1: Hansen's ^[29] hydrogen bubble visualization	9
Figure 3.1: Wind Tunnel Setup	11
Figure 3.2: Wing Model in SolidWorks® ready for 3D printing	12
Figure 3.3: Modular Two-Axis Load Cell	13
Figure 3.4: Modular Three-Axis Load Cell	14
Figure 3.5: Modular Upgradable Three-Axis Load Cell	14
Figure 3.6: Modular Five-Axis Load Cell	15
Figure 3.7: Load Cells Calibration	15
Figure 3.8: Precise Worm Gear	16
Figure 3.9: Pitch Control Device Assembly	16
Figure 3.10: Load Cell Misalignment	17
Figure 3.11: C _D symmetry Check	18
Figure 4.1: Wind tunnel corrections, Verification Case	23
Figure 4.2: Relative uncertainty contributions, verification case	28
Figure 4.3: Verification results vs Hansen's results ^[29]	29
Figure 5.1: Wings under test	30
Figure 5.2: Geometry of S7, P7 and S7hAhW	32
Figure 5.3: Difference between E7 (1:1), E7 (2:1)	33
Figure 5.4: Sinusoidal function near the humpback's trailing edge tip	34
Figure 5.5: $AR = 7$ Wings Performance. Re 77.000	37

Figure 5.6: P7 vs S7hAhW, Re 77,000	39
Figure 5.7: E7 (2:1) vs E7 (1:1), Re 77,000	40
Figure 5.8: <i>AR</i> = 2 Wings Performance, Re 174,000	42
Figure 5.9: S2 vs Straight2, Re 174,000	43
Figure 5.10: P2 vs S2, Re 174,000	45
Figure 5.11: T2 vs S2, Re 174,000	46
Figure 5.12: SLPT2 vs S2, Re 174,000	47
Figure 5.13: SLT2 vs S2, Re 174,000	48
Figure 5.14: SLPT2 vs SLT2, Re 174,000	49
Figure 5.15: <i>AR</i> = 2 Wings Performance, Re 120,000	51
Figure 5.16: <i>AR</i> = 2 Wings Performance, Re 77,000	52
Figure 5.17: Re Effect on S2 Wing.	54
Figure 5.18: Re Effect on P2	55
Figure 5.19: Re Effect on Straight2	56
Figure 5.20: Re Effect on SLPT2	57
Figure 5.21: Re Effect on SLT2.	58
Figure 5.22: Re Effect on T2	59
Figure A1.1: Relative Uncertainty contributions, Verification Case, Re 77,000	67
Figure A1.2: Relative Uncertainty contributions, AR2, Re 174,000	68
Figure A1.3: Relative Uncertainty contributions, Verification Case, Re 120,000	69
Figure A1.4: Relative Uncertainty contributions for wings of A R=2, Re=77,000	70

Nomenclature

AOA	Angle of Attack
α	Angle of Attack
α_u	Uncorrected Angle of Attack
AR	Aspect Ratio
b	Wing Span
С	Wing Chord
С	Test Section Area
C_D	Drag Coefficient
C_{D_i}	Induced Drag Coefficient
C_{D_o}	Zero-lift Drag Coefficient
C_{D_U}	Uncorrected Drag Coefficient
c_i	Sensitivity Coefficient
C_L	Lift Coefficient
$C_{L_{max}}$	Maximum Lift Coefficient
C_{L_u}	Uncorrected Lift Coefficient
D	Drag Force
δ	Boundary Correction Factor
\mathcal{E}_{sb}	Solid Blockage Correction Factor
\mathcal{E}_{wb}	Wake Blockage Correction Factor
F_C	Force in Chord Direction
F_N	Force Normal to Chord Direction
Ľ	Circulation
K	Coverage Factor
K_1	Body Shape Factor
L	Lift Force
l_t	Tail Length
λ	Wavelength
P_{w}	Peak Width
R	Half Width of Wind Tunnel
Re	Reynolds Number
S	Wing Surface Area
σ	Standard Deviation
T_w	Trough Width
u_c	Combined Uncertainty
U_i	Uncertainty of Interest
U_{∞}	Wind tunnel airspeed

v_{eff}	Effective Degrees of Freedom
v_i	Degrees of Freedom

Abstract

This work aims to answer some questions about the humpback whale flipper with its ability to delay stall and enhance post stall performance. A series of wind tunnel tests for 14 different wings with NACA 0021 profile and with different leading-edges are performed. The tests were divided into two groups: one of aspect ratio 7 which is as a convenient representative to a conventional airplane's wing, and the other group is with aspect ratio 2 as a convenient representative of a control surface aspect ratio or a MAV wing.

These experiments led to the discovery of a wing leading-edge geometry constructed with peaks of the sine wave that proved to reduce the drag coefficient up to 28% and increase the lift to drag ratio up to 48% relative to its comparable sinusoidal wing. They also led to suggesting an additional design parameter that should be included in the design process to maximize the aerodynamic gains of the wings with tubercles. This suggested design parameter is the peak (or trough) width. These questions also drew the attention to the tubercles found near the tip of the trailing edge of the humpback and its potential to enhance the post-stall hydrodynamic performance of the whale. They extended the idea of this configuration found in nature to a fully sinusoidal trailing edge to see if further aerodynamic enhancement can be captured.

This work also tested leading edge functions other than the sine wave approximation for the tubercles by studying elliptic and triangular functions spread along the leading edge of the wing and comparing them to a sinusoidal leading-edge wing to quantify the differences. It also studied the effect of some important aerodynamic parameters such as the sweep back angle and Reynolds number on the wings with tubercles.

Keywords: Sinusoidal leading-edge wing, Wings with tubercles, Wavy leading-edge wings, Humpback whale flipper.