Pain Assessment after Short Course versus Long Course Palliative Radiation of Painful Bony Metastasis

Thesis

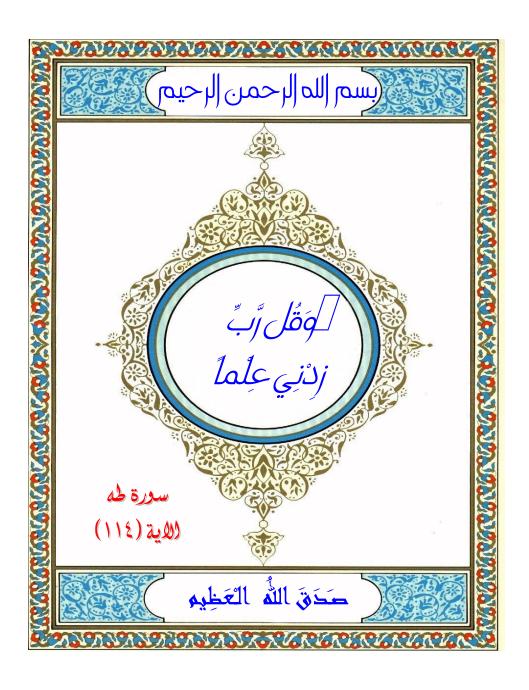
Submitted for Partial Fulfilment of Master Degree in Clinical Oncology and Nuclear Medicine

Bγ **Abdelfattah Rashad Abdelfattah Elmasry** *M.B.B.C.H.*

Under supervision of

Prof. Dr. Khaled Abdelkarim Mohamed

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University


Dr. Dalia Abd El-Ghany El-Khodary

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Dr. Ahmed Mostafa Mohamed

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University
2018

Acknowledgment

First and foremost, I feel always indebted to AllAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Khaled**Abdelkarim Mohamed, Professor of Clinical Oncology and Nuclear Medicine - Faculty of Medicine-Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Dalia Abd El-Ghang El-Khodary**, Assistant Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Mostafa Mohamed**, Lecturer of Clinical Oncology and Nuclear
Medicine, Faculty of Medicine, Ain Shams University,
for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Abdelfattah Rashad Abdelfattah Elmasry

List of Contents

Title	Page No.
List of Tables	i
List of Algorithms	iii
List of Figures	iv
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Bone Metastases	4
A. Incidence and Distribution of Bone Metastases	4
B. Normal bone physiology and turnover	6
C. Types of bone metastasis	6
D. Pathophysiology of bone metastases	8
E. Clinical aspects OF BONE METASTASES	12
F. Laboratory Studies	27
G. Imaging in Bone Metastases	28
Chapter (2): Bone Metastases Management Overview	[,] 37
A. Painful Bone Metastases Management Overview	v 37
1. Introduction to treatment concepts	37
2. Approach for Pain Management:	39
3. Approved therapeutic agents	40
B. Management of Other Skeletal Related Adverse Events	68
Spinal cord compression (including cauda equina syndrome)	
Symptomatic malignancy-related hypercalcemia	

List of Contents (Cont..)

	Title	Page No.
Chapt	ter (3): The Role of Radiation Therapy in Bone	
Metas	stases Management	74
A.	Indications and aims of radiation therapy	75
В.	Effects of radiation therapy on bone metastases	s77
C.	Fractionation schedules	78
D.	Response to radiation therapy	84
E.	Toxicity of radiation therapy	85
F.	Radiation therapy techniques	88
G.	Re-irradiation	93
H.	Future perspectives	96
Patie	nts and Methods	98
Resul	ts	104
Discu	ssion	126
Sumn	nary and Recommendations	137
	ences	
Arabi	c Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	Main clinical circumstances that influence the selection of the fraction	ation	7 0
Table (2):	Schemes	data	
Table (3): Table (4):	Response rate within both groups Comparison of mean pain score w both groups through determined	vithin pain	107
Table (5):	assessment intervals	rough als in	
Table (6):	Comparison of mean pain score the determined pain assessment interval patients receiving 400 cGy x 5 fraction	rough als in	
Table (7):	Pain response regarding baseline		
Table (8):	Use of narcotics before & after 3 montradiotherapy	ths of	
Table (9):	Comparison of pain response between genders in patients received 400 cG fractions.	y x 5	114
Table (10):		both x 10	
Table (11):	Comparison of pain response between types of malignancies in patients	both who	
Table (12):	received 400 cGy x 5 fractions	both	116
	received 300 cGy x 10 fractions		117

List of Cables (Cont...)

Table No.	Title	Page	No.
Table (13):	Comparison of pain response between		
	fractionation arms in 6 cases with procancer	siaie	118
Table (14):	Comparison of pain response between		
	fractionation arms in 22 cases with b cancer		110
Table (15):	Comparison of pain response according		110
	fractionation schedule in 16 cases		100
	peripherally located bone metastases		120
Table (16):	Comparison of pain response according	_	
	fractionation schedule in 34 cases		
	centrally located bone metastases		121
Table (17):	Comparison of pain response according	_	
	fractionation schedule in 38 cases		
	absent extraosseous component		122
Table (18):	Comparison of pain response according	ng to	
	fractionation schedule in12	cases	
	associated with extraosseous compon	${ m ent}$	123
Table (19):	Comparison of pain response according	_	
	fractionation schedule in patients	35	
	patients younger than 60 years old		124
Table (20):	Comparison of pain response accordi	ng to	
	fractionation schedule in 15 patient	s 60	
	vears old or older		125

List of Algorithms

Algorithm No.		Title			Page No.		
Algorithm (1):	Treatment of	of ca	ncer p	ain			41
Algorithm (2):	Treatment metastases		-				42

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The development of bone metastate be considered in several colonization, quiescence, profeither locally leading to overt metastate in bone or dissemination to another	stages: gression etastasis
Figure (2):	Showing the data collection tool us	sed 100
Figure (3):	Percentage of different cancer within study population	
Figure (4):	Main pain score in both treatme through determined assessment in	
Figure (5):	Percentage of narcotic use before after each fractionation regimen	

List of Abbreviations

Abb.	Full term
3-DCRT	. Three-dimensional conformal radiation therapy
	American Society for Radiation Oncology
	· Adenosine triphosphate
BC	
<i>BMP</i>	. Bone morphogenic proteins
<i>BPI</i>	Brief Pain Inventory
BTP	. Breakthrough pain
CA15-3	. Carcinoma Antigen 15-3
Cbfa1	. Core binding factor alpha1
CNS	. Central nervous system
COX-2	. Cyclo-oxygenase-2
CT	. Computed tomography
CXCR4	. C-X-C chemokine receptor type 4
DNA	. Deoxyribonucleic acid
DW-MRI	Diffusion-weighted magnetic resonance imaging
EBRT	External beam radiotherapy
EDTMP	$. \ Et hylenediam in et et ramethylene\ phosphate$
EORTC QLQ	European Organisation for Research and Treatment of Cancer Quality-of-Life Questionnaire
FDA	Food and Drug Administration
FDG	. Fludeoxyglucose
HBI	. Hemi-body irradiation
<i>HIFU</i>	. High intensity focused ultrasound
<i>IASP</i>	International Association for the Study of Pain
<i>IP</i>	Investigational Product
<i>IT</i>	$.\ Intra-the cal$
<i>ITDD</i>	Intra-thecal drug delivery
<i>IV</i>	. Intravenous

List of Abbreviations (cont...)

Abb.	Full term
<i>MM</i>	. Multiple myeloma
MRI	. Magnetic resonance imaging
<i>MSCC</i>	Metastatic spinal cord compression
mTOR	. Mammalian target of rapamycin
<i>NCCN</i>	National Comprehensive Cancer Network
<i>NMDA</i>	.N-methyl- D -aspartate
<i>NNT</i>	Number needed to treat
<i>NP</i>	Neuropathic pain
NSAIDS	Nonsteroidal anti-inflammatory drugs
<i>NTx</i>	.N-telopepti de
<i>OMED</i>	Daily oral morphine equivalent
<i>ORT</i>	. Opioid Risk Tool
PET	. Positron-emission tomography
PROMIS	. Patient Reported Outcomes Measurement Information System
<i>PSA</i>	. Prostate-specific antigen
<i>PTH</i>	.Parathyroid hormone
<i>PTHrP</i>	. Parathyroid hormone related peptide
<i>QOL</i>	. Quality of life
<i>RANK</i>	. Receptor activator of NF-kappa B
RANKL	. Receptor activator of NF-kappa B ligand
<i>RCT</i>	Randomized controlled trial
<i>RFA</i>	. Radiofrequency ablation
<i>RR</i>	. Response Rate
<i>RT</i>	. Radio the rapy
S.C	.Subcutaneous
<i>SBRT</i>	. Stereotactic body radiotherapy
SCC	. Spinal cord compression
SDF-1	Stromal cell derived factor 1

List of Abbreviations (cont...)

Abb.	Full term
SOAPP	Screener and Opioid Assessment for Patients
SOAPP-R	Screener and Opioid Assessment for Patients with Pain-Revised
SPEP	Serum protein electrophoresis
TC 99m	Technetium-99
<i>UPEP</i>	Urine protein electrophoresis
WHO	World Health Organization

INTRODUCTION

he most common cause of pain in cancer patients is bone metastases (*Coleman*, 2006). Among solid cancers, prostate, breast, thyroid, lung, and renal cell carcinoma account for 80 percent of all skeletal metastases (Kvale et al., 2007).

The primary disease site determines the prognosis for patients with bone metastases; patients with breast and prostate cancer have a longer median survival when it's compared with lung cancer (Lutz et al., 2010).

Bone metastases can be categorized as complicated or uncomplicated, where uncomplicated generally refers to the absence of: impending or established pathological fracture, previous surgical fixation, impending or established spinal cord compression, impending or established cauda equina or nerve root compression (including cranial nerves), neuropathic pain, previous radiation. or associated soft tissue mass. Approximately one-third of bone metastases are considered to be 'complicated' (Tiwana et al., 2016). Oligometastatic disease describes an intermediate state between disease that is localized to the primary site, and widespread metastases (Weichselbaum et al., 2011). The specific definition of oligometastases varies but in this review and as used by others, it means five or fewer metastatic lesions. Skeletal-related events typically encompass pathologic fracture, spinal cord compression, surgical

intervention or use of palliative radiotherapy (RT) (Ibrahim et al., 2003).

The treatment of an asymptomatic bone metastasis may be deferred unless the patient develops pain or is at risk for a skeletal-related event. The treatment of bone metastases may involve several types of systemic interventions, including chemotherapy, hormonal therapy, bisphosphonates, radioisotopes, in addition to local interventions such as external beam radiotherapy (EBRT), stereotactic body radiotherapy (SBRT) hemi-body irradiation (HBI), radioisotopes, surgery, or percutaneous vertebral augmentation depending on the site and extent of disease, histology and biomarker profile of the metastasis (Lutz et al., 2010).

AIM OF THE WORK

The primary objective of the study is to determine whether short term radiation therapy (20 Gy of radiation therapy delivered in 5 treatment fractions) and long term radiation therapy (30 Gy of delivered in 10 treatment fractions) provide equivalent outcomes regarding pain for patients with painful bone metastases.