

OPTIMAL DESIGN OF NANO ANTENNAS AND MICROWAVE SYSTEMS USING KRIGING SURROGATE MODELS

By

Eng. Ahmed Sayed Mohamed Etman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

ENGINEERING MATHEMATICS

OPTIMAL DESIGN OF NANO ANTENNAS AND MICROWAVE SYSTEMS USING KRIGING SURROGATE MODELS

By Eng. Ahmed Sayed Mohamed Etman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
ENGINEERING MATHEMATICS

Under the Supervision of

Prof. Dr. Abdel-Karim S. O. Hassan

Prof. Dr. Ezzeldin A. Soliman

Professor of Mathematics
Department of Engineering Math. and
Physics,
Faculty of Engineering, Cairo University

Professor and Chair Department of Physics, School of Sciences and Engineering, The American University in Cairo

OPTIMAL DESIGN OF NANO ANTENNAS AND MICROWAVE SYSTEMS USING KRIGING SURROGATE MODELS

By Eng. Ahmed Sayed Mohamed Etman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
ENGINEERING MATHEMATICS

Approved by the Examining Committee

Prof. Dr. **Abdel-Karim S. O. Hassan**, (Thesis Main Advisor)

Prof. Dr. Ezzeldin A. Soliman, (Advisor)

- The American University in Cairo

Prof. Dr. Hany L. Abdel-Malek, (Internal Examiner)

Prof. Dr. Amr M. A. Shaarawi, (External Examiner)

- The American University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Ahmed Sayed Mohamed Etman

Date of Birth: 16/03/1986 **Nationality:** Egyptian

E-mail: eng_ahmed_etman@yahoo.com

Phone: 01115628779

Address: Giza

Registration Date: 1/10/2014 **Awarding Date:** 1/10/2018

Degree: Doctor of Philosophy

Department: Engineering Mathematics and physics

Supervisors:

Prof. Abdel-Karim S. O. Hassan

Prof. Ezz A. Soliman

- The American University in Cairo

Examiners:

Prof. Abdel-Karim S. O. Hassan (Thesis Main Advisor)

Prof. Ezz A. Soliman (Advisor)

- The American University in Cairo

Prof. Hany L. Abdel-Malek (Internal Examiner)
Prof. Amr M. A. Shaarawi (External Examiner)

- The American University in Cairo

Title of Thesis:

Optimal design of nano antennas and microwave systems using kriging surrogate models.

Kev Words:

Kriging Models; Multi-objective optimization; Design centering; Nano antennas; Microwave systems.

Summary:

In this thesis, the kriging models are used to construct surrogate models for the nano antennas and the microwave systems. The associated optimization problems treated during this work are the multi-objective optimization problem and the design centering problem. The multi-objective optimization problem is solved using multi-objective particle swarm optimization with Preference Ranking Organization METHod for Enrichment Evaluations while the design centering problem is solved using the normed distances method. Several EM-based systems are considered in this thesis. These systems include two novel reconfigurable nano antennas and microwave systems.

Acknowledgments

First, I would like to express my deepest thanks to ALLAH, the most merciful. This work would not be achieved without ALLAH willing and support.

I am heartily thankful to my supervisors Prof. Dr. Abdel-karim S. O. Hassan, Prof. Dr. Ezzeldin A. Soliman for their encouragement, guidance and support from initial to the final level. During the years of the study, they have constantly addressed me with helpful advices and suggestions. Thanks to their wisdom and patience which were very important for this work.

I also would like to greatly thank Prof. Tamer M. Abulfadl for his continuous and invaluable guidance. I shall always remember him for his kindness and all the support he has given me throughout my studies.

I offer my deep gratitude to Associate Prof. Dr. Ahmed S. A. Mohamed, Associate Prof. Dr. Mohamed El-Beltagy, for their expert advice and fruitful discussions during the work.

I would like to express my gratitude to all my teachers and colleagues in Engineering Mathematics and Physics Department for their sincere encouragements.

Also, I extend sincere thanks to all friends and colleagues who I have shared precious moments of this journey.

Finally, I would like to dedicate my work to my beloved father, mother, brother and sisters. None of my achievements would have been possible without their unconditional love and support.

Ahmed Sayed

Dedication

To my beloved parents and family

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	
NOMENCLATURE	
ABSTRACT	XI
CHAPTER 1: INTRODUCTION	1
1.1.OPTIMAL DESIGN OF NANO ANTENNAS AND MICROWAVE SYSTEMS	1 2 2
CHAPTER 2: OPTIMIZATION AND OPTIMAL SYSTEM DESIGN	6
2.1. Introduction	
2.2. SURROGATE BASED OPTIMIZATION	6
2.2.1 Design of Experiments	
2.2.1.1 Classical Methods	
2.2.1.1.1 Full Factorial Design	
2.2.1.1.2 Central Composite Design 2.2.1.1.3 Box-Behnken Design	
2.2.1.2 Space Filling Methods	
2.2.1.2.1 Monte Carlo sampling Design	
2.2.1.2.2 Latin hypercube sampling Design	9
2.2.1.2.3 Orthogonal Array Design	
2.2.2 Surrogate Modeling Techniques	
2.2.2.1 Physically Based Surrogate Model	
2.2.2.1.1 Space mapping 2.2.2.1.2 Mainfold mapping	
2.2.2.2 Mathematically Based Surrogate Model	
2.2.2.2.1 Polynomial Regression model	
2.2.2.2.2 Radial Basis Function	
2.2.2.2.3 Artificial Neural Networks	
2.2.2.2.4 Support vector regression	
2.3. MULTI-OBJECTIVE OPTIMIZATION	
2.3.1 Scalarization methods	
2.3.1 Scalarization methods	
2.3.1.2 Goal Programming.	
2.3.1.3 Weighted sum method	
2.3.1.4 The ε- Constraint method	20
2.3.1.5 Lexicographic Ordering	
2.3.2 Vector-based methods	
2.3.2.1 Multi-objective Evolutionary algorithms (MOEAs)	
2.3.2.1.1 The Vector Evaluated Genetic Algorithm (VEGA)	
2.3.2.1.3 Niched-Pareto Genetic Algorithm (NPGA)	
2.3.2.1.4 Rudolph's Elitist Multi-Objective Evolutionary Algorithm	

2.3.2.1.5 Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)	
2.3.2.1.6 Distance based Pareto Genetic Algorithm (DPGA)	
2.3.2.2 Particle Swarm Optimization	25
2.3.2.2.1 Leaders in Multi-Objective Optimization	
2.3.2.2.2 Retaining Nondominated Solutions	27
2.3.2.3 Simulated Annealing	29
2.4. DESIGN CENTERING.	
2.4.1 The Simplicial Approximation Method	
2.4.2 The Quadratic Approximation Method	32
2.4.3 The Ellipsoidal Technique for Design Centering	33
2.4.4 The Ellipsoidal Method	33
2.4.5 Convexity Based Algorithm for Design Centering Method	34
2.4.6 The Linearized Performance Penalty (LPP)	
2.4.7 The Worst-Case Distance Method	
2.4.8 Design Centering using Semidefinte Programming	
2.4.9 Design Centering using Normed Distances	
2.5. MULTI-OBJECTIVE OPTIMIZATION AND DESIGN CENTERING	
2.5.1 Illustrative Example 1	
2.5.1 Illustrative Example 2	
2.5.1 Illustrative Example 3	38
CHAPTER 3: NUMERICAL SIMULATION OF EM-BASED SYSTEM	IS40
3.1 Introduction	
3.2. ELECTROMAGNETIC FIELDS	
3.3. FINITE DIFFERENCES TIME DOMAIN (FDTD)	
3.4. METHOD OF MOMENTS (MOM)	
3.5. TRANSMISSION LINE MATRIX (TLM)	
3.6. FINITE ELEMENT METHOD (FEM)	
3.6.1 Finite element shapes	
3.6.2 Interpolation functions	
3.6.3. FEM problem formulation	
3.7. EM SIMULATORS	
3.7.1 SONNET	
3.7.3 CST	
3.7.1 Using EM simulators in the optimization process	
CHAPTER 4: OPTIMAL DESIGN OF EM-BASED SYSTEMS	51
4.1. Introduction	51
4.2. Kriging surrogate model	
4.3. MOPSO WITH PROMETHEE	
4.4. Design Centering Using Normed Distances	
CHAPTER 5: A NOVEL NANO ANTENNA WITH TWO RADIATION	
	61
5.1. Introduction	61
5.2. PROPOSED RECONFIGURABLE NANO ANTENNA	
5.3. OPTIMIZATION RESULTS	
5.3.1 Component-Based Optimization	
5.3.1.1 Ring Coupler Optimization	66
5.3.1.2 Patch Nano antenna Optimization	
5.3.1.3 Optimization of the Integration of Components	
2,2,2 LIMI - Dasea Orannizanon	1 4

5.4. Sensitivity Analysis	78
5.5. CONCLUSION	81
CHAPTER 6: A NOVEL DUAL-POLARIZED NANOCRESCENT ANT	ENNA 82
6.1 Introduction	82
6.2 THE PROPOSED RECONFIGURABLE NANO ANTENNA	83
6.3 OPTIMIZATION RESULTS	
6.4 Sensitivity Analysis	90
6.5. CONCLUSION	91
CHAPTER 7: DESIGN CENTERING OF MICROWAVE SYSTEMS	94
7.1 Introduction	94
7.2 SIX-SECTION H-PLANE WAVEGUIDE FILTER	
7.3 BANDSTOP MICROSTRIP FILTER WITH OPEN STUBS	96
7.4 RF CAVITY	
7.5 THE RE-ENTRANT RF CAVITY FOR KLYSTRON AMPLIFIER	100
7.6 Ultra-wideband (UWB) multiple-input-multiple-output antenna	
CHAPTER 8 : CONCLUSIONS AND SUGGESTIONS FOR FUTURE	
REFERENCES	

List of Tables

Table 2.1: Types of correlation function	15
Table 2.2: Results of ZDT1 optimization	37
Table 2.3: Results of Example 2 optimization	38
Table 2.4: Results of Example 3 optimization	39
Table 5.1: Results of the ring coupler optimization [99]	67
Table 5.2: Results of the patch nano antenna optimization [99]	70
Table 5.3: Results of the integration of components optimization [99]	73
Table 5.4: Results of the entire-based optimization [99]	76
Table 6.1: Initial and Final Dimensions, Results, Yield, Simulation Time	87
Table 7.1: Results of the six-section H-plane waveguide flter	96
Table 7.2: Results of the bandstop microstrip flter	97
Table 7.3: The results of the RF cavity	99
Table 7.4: The results of the Re-entrant RF cavity	103
Table 7.5: The Optimization results of the UWB MIMO antenna	105

List of Figures

Figure 2.1: Full factorial design and fractional factorial design in case of two levels a three design variables:(a) Full factorial design (b) fractional factorial design.	rial 7
Figure 2.2: Examples on Central Composite Design and Box-Behnken Design (a)	12^{2}
CCC (b) 2 ² CCI (c) 2 ³ CCF (d) Box- Behnken for three des	_
	8
Figure 2.3: Examples on Monte Carlo sampling: (a) Basic Monte Carlo sampling	
Stratified Monte Carlo Sampling	
Figure 2.4: Example on LHS sampling.	
Figure 2.5: Example on orthogonal array OA(4,3,2,2).	
Figure 2.6: manifold-mapping model alignment: (a) Coarse and fine model	
surrogate and fine model.	
Figure 2.7: The pareto front and the ideal vector of ZDT1	
Figure 2.8: The ring neighborhood topology	
Figure 2.9: The fully connected graph	
Figure 2.10: The star network topology.	
Figure 2.11: The tree network topology.	
Figure 2.12: A flow chart for a general MOPSO algorithm	
Figure 2.14: Illustration of the current and the new hyperellipsoids	
Figure 2.16: Initial and final points of example 3	
Figure 3.1: The electromagnetic fields in Yee cell	
Figure 3.2: Typical finite elements	
Figure 3.3: Example on Finite elements with adaptive size	
Figure 4.1: A flow chart of the proposed algorithm.	
Figure 4.2: A flow chart of the algorithm of MOPSO integrated with PROMETHEE.	
Figure 4.3: Normed distance between the point x^0 and the feasible region boundary.	
Figure 4.4: Boundary search technique	
Figure 4.5: A flow chart of the Design centering using the normed distances	
Figure 5.1: Structure of the ring coupler.	
Figure 5.2: The structure of the patch antenna	
Figure 5.3: Structure of the proposed reconfigurable nano antenna [99]	
THz [99]	
Figure 5.5: Field distribution at 193 THz resonance frequency due to excitation fr	
port 1: (a) Ex component , and (b) Hz component	
[99]Figure 5.6: Field distribution at 193 THz resonance frequency due to excitation fr	
port 4: (a) Ex component, and (b) Hz component	
[99]	
Figure 5.7: S-parameters magnitude of the ring coupler versus frequency at: (a) Ini	
	inal
[99]	
Figure 5.8: Phase of S_{24} , S_{34} of the ring coupler versus frequency [99]	
Figure 5.9: S ₁₁ of the patch nano antenna versus frequency [99]	

Figure 5.10: Radiation pattern of the patch nano antenna at the initial point of: (a) MOPSO (b) Normed distances [99]
Figure 5.11: Radiation pattern of the patch nano antenna at the final point of: (a)
MOPSO (b) Normed distances[99]71
Figure 5.12: S-parameters magnitudes of the reconfigurable nano antenna versus
frequency at initial and final points for: (a) MOPSO and (b) Normed distances [99]74
Figure 5.13: Radiation pattern of the reconfigurable nano antenna at the initial point of
MOPSO due to excitation from: (a) port 1 and (b) port 4 [99]
Normed distances due to excitation from: (a) port 1 and (b) port 4
[99]75
Figure 5.15: Radiation pattern of the reconfigurable nano antenna at the final point of
MOPSO due to excitation from: (a) port 1 and (b) port 4 [99]75
Figure 5.16: Radiation pattern of the reconfigurable nano antenna at the final point of
Normed distances due to excitation from: (a) port 1 and (b) port 4
[99]
Figure 5.17: S-parameters magnitudes of the reconfigurable nano antenna versus
frequency [99]
due to excitation from: (a) port 1 and (b) port 4 [99]
Figure 5.19: Radiation pattern of the reconfigurable nano antenna at the final point of
MOPSO due to excitation from: (a) port 1 and (b) port 4. [99]78
Figure 5.20: Radiation pattern of the reconfigurable nano antenna at the final point of
Normed distances due to excitation from: (a) port 1 and (b) port 4
[99]
Figure 5.21: Sensitivity of the objectives with respect to the design variables with 5%
perturbation for the solution obtained using: (a) MOPSO and (b) Normed distances
Figure 5.22: Sensitivity of the objectives with respect to the design variables with 10%
perturbation for the solution obtained using: (a) MOPSO and (b) Normed distances
[99]80
Figure 6.1: The structure of the proposed dual-polarized nanocrescent antenna84
Figure 6.2: Longitudinal modal electric field distribution of the coupled strips
transmission line at 193 THz: (a) odd mode, and (b) even
1
mode
Figure 6.3 : Electric field distribution of the nanocrescent antenna at $193\ \text{THz}$ as
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component85
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component
Figure 6.3 : Electric field distribution of the nanocrescent antenna at 193 THz as excited with the odd mode: (a) Ex component, and (b) Ey component

Figure 6.9: Radiation pattern at 193 THz of the dual-polarized nanocrescent antenna at
the final point of normed distances due to exciting the even mode: (a) xz-plane and (b)
yz-plane89
Figure 6.10: Radiation pattern at 193 THz of the dual-polarized nanocrescent antenna at
the final point of MOPSO due to exciting the odd mode: (a) xz-plane and (b) yz-
plane90
Figure 6.11: Radiation pattern at 193 THz of the dual-polarized nanocrescent antenna at
the final point of MOPSO due to exciting the even mode: (a) xz-plane and (b) yz-
plane90
Figure 6.12: Sensitivity of the objective functions to the design parameters with 5%
perturbation calculated around the optimum point of: (a) normed distances and (b)
MOPSO
Figure 6.13: Sensitivity of the objective functions to the design parameters with 10%
perturbation calculated around the optimum point of: (a) normed distances and (b)
MOPSO
Figure 7.1: The six-section H-plane waveguide filter: (a) The 3D view. (b) One half of
the 2D cross section
Figure 7.2: The structure of the bandstop microstrip filter
Figure 7.3: $ S_{21} $ of the bandstop microstrip filter
Figure 7.4: Structure of RF cavity
Figure 7.5: The geometry of the cavity at: (a) the initial point and (b) the final point 100
Figure 7.6: The re-entrant cavity structure101
Figure 7.7: The geometry of the re-entrant cavity at : (a) the initial point and (b) the
final point
Figure 7.8: The structure of the proposed antenna.
Figure 7.9: S-parameters magnitudes of the UWB MIMO antenna using RO4350B
substrate versus frequency
Figure 7.10: S-parameters magnitudes of the UWB MIMO antenna using RO4003C
substrate versus frequency
Figure 7.11: Radiation pattern of the UWB MIMO antenna using RO4350B substrate
for: (a) a single element and (b) the entire antenna
Figure 7.12: Radiation pattern of the UWB MIMO antenna using RO4350B substrate
for: (a) a single element and (b) the entire antenna
Figure 7.13: The photograph of the fabricated antenna: (a) Front side and (b) Back side
Figure 7.14: Simulated and measured S-parameters magnitudes of the UWB MIMO
antenna using RO4003C substrate versus frequency 109

Nomenclature

EM Electromagnetic

MOP Multi-objective Optimization Problem
MOEAs Multi-Objective Evolutionary Algorithms
MOPSO Multi-Objective Particle Swarm Optimization

PROMETHEE Preference Ranking Organization METHod for Enrichment Evaluations

DOE Design of Experiments
CCD Central composite design

CCC central composite circumscribed
CCI central composite inscribed
CCF central composite faced
BBD Box -Behnken design
MCS Monte Carlo sampling
LHS Latin hypercube sampling

OA Orthogonal Array
SM Space Mapping
MM Manifold mapping
MLP Multilayer perceptron
SVR Support vector regression

DS Design space DM Decision maker

VEGA Vector Evaluated Genetic Algorithm
NSGA Nondominated Sorting Genetic Algorithm

NPGA Niched-Pareto Genetic Algorithm

DPGA Distance based Pareto Genetic Algorithm SPEA Strength Pareto Evolutionary Algorithm

PSO Particle Swarm Optimization

SA Simulated annealing

PSA Pareto Simulated annealing FDTD Finite differences time domain

MOM Method of moments

TLM Transmission Line Matrix FEM Finite Element method

MIMO Multiple Input Multiple Output

PML Perfect Matched Layer

UWB Ultra-wideband

Abstract

In general, finding the optimal system design requires solving associated optimization problems. Hence, obtaining the optimal design of nano antennas and microwave systems requires multitude of function evaluations. Each function evaluation is performed by running a computationally expensive full-wave electromagnetic simulator. This renders the optimization process of these systems very slow and it may be practically prohibitive. To overcome this problem, computationally cheap surrogates such as (Response Surfaces, Space Mapping, Kriging Models and Neural Networks) are used. Throughout the optimization process, iteratively updated surrogates are employed to replace the computationally expensive function evaluations. In this thesis, the Kriging models are used to construct surrogate models for the nano antennas and the microwave systems. The optimization process is performed on the surrogate models. The associated optimization problems treated during this work are the multi-objective optimization problem and the design centering problem. The multiobjective optimization problem is solved using multi-objective particle swarm optimization (MOPSO) with Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE) while the design centering problem is solved using the normed distances method.

Several EM-based systems are considered in this thesis. These systems include two novel reconfigurable nano antennas and microwave systems. The first nano antenna has two radiation modes. Its radiation pattern can be adjusted to alternate between broadside and endfire directions based on the location of the applied excitation signal. The second nano antenna is a nanocrescent antenna with polarization diversity. The polarization of its radiating fields can be adjusted to alternate between two orthogonal directions based on the excited mode. The optimal designs of the proposed nano antennas are obtained using both MOPSO with PROMETHEE and the normed distances method. Some microwave systems are also considered in this thesis. The optimization problem considered for these systems is the design centering problem which is solved using the normed distances method. These microwave systems include two microwave filters, two RF cavities and a novel ultra-wideband multiple-input-multiple-output antenna.