Bacteriological study on Salmonella in slaughter cows

A Thesis Presented By

Ahmed Maher Maher

(B.V.Sc., Cairo University, 2005)

For The Degree of
Master in Veterinary Medical sciences
(Bacteriology, Immunology and Mycology)

Under The Supervision Of

Prof. Dr. Saad Ahmed Attia Said

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Lt. Colonel. Dr. Wael Abdelmordy El- Nyaad

Veterinary Service Department Egyptian Armed Force

Bacteriological study on Salmonella in slaughter cows

A Thesis Presented By

Ahmed Maher Maher

(B.V.Sc., Cairo University, 2005)

For The Degree of
Master in Veterinary Medical sciences
(Bacteriology, Immunology and Mycology)

Under The Supervision Of

Prof. Dr. Saad Ahmed Attia Said

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Lt. Colonel. Dr. Wael Abdelmordy El- Nyaad

Veterinary Service Department Egyptian Armed Force

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Approval Sheet

This is to certify that the dissertation presented by **Ahmed Maher Maher Omar** to Cairo University for the **master** degree in Veterinary Science (Bacteriology, Immunology and Mycology) has been approved by the examining committee:

Prof. Dr. Mohamed Elsayd Anany

Professor of Microbiology

Faculty of Veterinary Medicine

Suez Canal University

Prof. Dr. Jakeen Kamal Abd El Haleem

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Saad Ahmed Attia Saad (Supervisor)

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

Lt. Colonel. Dr. Wael Abdelmordy El- Nyaad (Supervisor)

Veterinary Service Department

Egyptian Armed Force

Supervision Sheet

Bacteriological study on Salmonella in slaughter cows

A Thesis Presented By

Ahmed Maher Maher

(B.V.Sc., Cairo University, 2005)

For The Degree of
Master in Veterinary Medical sciences
(Bacteriology, Immunology and Mycology)

Under The Supervision Of

Prof. Dr. Saad Ahmed Attia Said

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University.

Lt. Colonel. Dr. Wael Abdelmordy El- Nyaad

Veterinary Service Department Egyptian Armed Force

ABSTRACT

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Name: Ahmed Maher Maher

Birth date: 5-08-1983 Nationality: **Egyptian**

For the degree of: **MSc** (**Microbiology**)

Title of Thesis: Bacteriological study on Salmonella in slaughter cows

Supervisors:

Prof. Dr. Saad Ahmed Attia Said

Professor of Microbiology Department of Microbiology, Faculty of Veterinary Medicine, Cairo University.

Lt. Colonel. Dr. Wael Abdelmordy El- Nyaad

Veterinary Services Department, Egyptian Armed Forces.

The aim of this study was to isolate, cultivate and identify of *Salmonella* recovered from slaughtered cows. In the present study standard ISO 6579 method was used to investigate the presence of salmonellae in slaughtered cattle. Salmonellae were detected in 28 % gall bladder samples, 24 % duodenum samples, 10 % hide swabs,10 % liver samples, 8 % Pre-femoral (pre-crural) lymph node swabs, 6 % Pre-scapular lymph node swabs and 0 % raw muscle meat samples. *Salmonella* isolates were identified as *Salmonella* Muenster (17), *S.* Typhimurium (15), *S.* Kentucky (4), *S.* Anatum (3), *S.* Nyborg (3) and *S.* Livingstone (1). All isolates were sensitive to azithromycin, Most isolates were sensitive to ceftriaxone (77 %), sulfa-trimethoprim and cefotaxime (67% each), cephalexin 63% and cefoperazone 58%. On the other hand, all isolates were resistant to Rifampin and Clindamycin. Most *Salmonella* isolates were resistant to amoxicillin (81%) and cefepime (72%). Confirmation of 43 recovered *Salmonella* serovars by Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) which used as a reliable fast and economic tool for the identification of Gram-negative bacteria especially *Salmonella* which could be used as an alternative diagnostic tool for routine identification and differentiation of clinical isolates.

Key words (Salmonella, slaughtered cows and MALDI-TOF MS).

بسم الله الرحمن الرحيم (وَمَا أُوتِيتُمْ مِنْ الْعِلْمِ إِلاَّ قَلِيلاً) سورة الإسراء ٥٨ صدق الله العظيم

Dedication

To my precious father, mother and whole family

To my lovely wife Hend Abu Elhassan and my two children Rana and Yara.

To my friends and colleagues

Acknowledgment

I wish first to thank **Allah** for ever for helping me to complete this work.

I would like to express my deepest gratitude and sincere thanks to **Prof. Dr. Saad Ahmed Attia Saad,** Professor of Microbiology, Faculty of Vet. Med., Cairo Univ., for his kindness, useful suggestions, continuous help and supervision throughout this work.

Deep appreciation is expressed to **Lt. Colonel. Dr. Wael Abdelmordy**, Veterinary Services Department, Egyptian Armed Forces who helped, critiqued and for his support to finish my studies successfully and assisted me during this project.

I wish to record my cordial thanks and gratitude to **Prof. Dr. Islam Atia Rayan**, Veterinary Services Department, Egyptian Armed Forces for his cooperation and help along this study.

Sincere thanks and deep gratitude to **Prof. Dr. Mona M. Sobhy**, Professor of Microbiology, Division of Vet. Med., Animal Reproduction Research Institute, her valuable help along this study.

I am grateful to **Dr. Ahmed Orabi**, Lecturer of Microbiology, Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his valuable advice and guidance throughout the course of the thesis.

contents

	Page
1- Introduction	1
2- Review of literature	6
2.1-Salmonella Nomenclature	6
2.1-1- Pathogenesis of <i>Salmonella</i>	8
2.1-2- Genus of Salmonella	12
2.2- Bacteriological contamination of meat and its products	13
2.3- Incidence of <i>Salmonella</i> in meat and its products	20
2.4- Outbreak of <i>Salmonella</i>	28
2.5- Identification of <i>Salmonella</i>	33
2.5-1- Conventional cultural methods	33
2.5- 2-Serotyping	36
2.5-3- Molecular detection methods	39
2.5-4- MALDI-TOF	44
3- Materials and Methods	48
3.1-Material	48
3.1-1- Samples	48
3.1-2- Material used for bacteriological examination	49
3.1-3- Material used for serological identification	55
3.1-4- Material used for sensitivity test	55
3.1-5- Material used for MALDI-TOF MS	58
3.2-Methods	59
3.2-1- Collection of samples	59
3.2-2- Bacteriological examination	59
3.2-2-1- carcass swabs	59
3.2-2-2- internal organs	59
3.2-3- Identification of the isolates	60
3.2-4- Serological identification of Salmonella isolates	61
3.2-5- In-vitro antibiotic sensitivity of the Salmonella isolates	62

3.2-6- MALDI-TOF MS method	63
4- Results	66
4.1- Result of applying cultural, and biochemical characters of the isolated <i>salmonella</i>	66
4.2- Incidence of <i>Salmonella</i> in cattle carcass	68
4.3- Serotyping of isolated <i>Salmonella</i> serovars	69
4.4- Antibiogram of <i>Salmonella</i> isolated serovars	70
4.5- Bruker Daltonik MALDI Biotyper classification results	78
5- Discussion	81
Conclusion	93
6- Summary	95
7- References	98
8- Abbreviations	138
Arabic summary	۲
Arabic Abstract	1

Tables

No.	Title	Page
1	Different samples collected from cattle carcass for isolation of <i>Salmonella</i> serovars	48
2	Reactions of <i>Enterobacteriaceae</i> in TSI test	53
3	Source of antibacterial agents, concentration and zone size interpretation chart	57
4	Biochemical identification of Salmonella isolates	60
5	Results of biochemical identification of the isolated <i>salmonellae</i> using standard laboratory tests	66
6	Incidence of <i>Salmonella</i> in cattle carcass according to different sites of sampling	69
7	Serotyping of <i>Salmonella</i> isolated from collected samples	70

8	Results of antibacterial sensitivity test on the recovered <i>Salmonella</i> serovars using disk diffusion test and percentage was calculated to total number of isolates (43)	71
9	Antibiogram of S. Muenster (17 isolates)	72
10	Antibiogram of S. Typhimurium (15 isolates)	73
11	Antibiogram of S. Kentucky (4 isolates)	74
12	Antibiogram of S. Anatum (3 isolates)	75
13	Antibiogram of S. Nyborg (3 isolates)	76
14	Antibiogram of S. Livingstone (1 isolates)	77
15	Results of Salmonella MALDI-TOF classification	78

Figures

No.	Title	Page
1	Schematic representation of <i>salmonella's</i> classification and diversity.	28
2	Schematic diagram showing the work-flow in a MALDI-TOF MS	65
3	Salmonella organism on XLD	67
4	Results of Salmonella organism (biochemical identification)	67
5	Results of <i>Salmonella</i> organism on Simmon's Citrate (biochemical identification)	68

Introduction

Food-borne diseases represent an important public health problem, significantly affecting the health of the population with major economic consequences (FAO, 2002). Bacterial pathogens are especially of most serious concern regarding the issues of meat safety to consumers (Sofos, 2008). Human pathogen contamination of raw meat products is caused by a wide array of pre-harvest, harvest, and post-harvest processes (Li & Mustapha, 2005).

The main reservoir of zoonotic *Salmonella* is food animals and beef represents one well recognized source of human infection (USDA, 2007); and the main sources of infections in industrialized countries are animal-derived products, notably fresh meat products and eggs. In developing countries, contaminated vegetables, water, and human-to-human transmission are believed to contribute to comparatively larger proportion of human cases than those in industrialized countries (**Acha & Szyfres, 2001**).

Salmonella is an infectious agent causing typhoid, paratyphoid and enteritis (food poisoning) in human and many other diseases in domestic and wild animals as well as birds. The genus Salmonella is a member of the bacterial family Enterobacteriacae. It is a Gram negative, straight, non-spore forming rods peritrichous flagellated, facultative anaerobic and can grow well under both aerobic and anaerobic conditions (Wagner, 2010).

More than 2400 serovars of *Salmonella enterica* are recognized now and are capable of infecting a variety of animal species, poultry as well as human. *Salmonella enterica* serovars, Typhimurium, Enteritidis, Agona, Virchow, Montevideo, Hadar.....etc. are the serotypes most commonly associated with human salmonellosis (**Rajashekara**, *et al.*, **2000** and **Cormican** *et al.*, **2002**).

The incidence of human salmonellosis is rising in most countries where surveillance networks have been set up and World Health Organization (WHO) recorded that the problem becomes one of the diseases of public health significance, while multiple drug resistant *S.* Typhi (the causative agent of typhoid fever in man) is responsible for numerous outbreaks possessing a major threat to the affected persons due to failure of treatment of the disease (Breuil *et al.*, 2000 and Wain *et al.*, 2003).

In the European Union, meat products were the second most common food group contributing to human salmonellosis in 2005, Contamination of beef during slaughter and processing is a major risk of subsequent food-borne infection of the consumers (**Norrung and Buncic 2008**).

Cattle may be reservoir of several bacterial pathogens that are present in their gastrointestinal tract without any clinical signs in animals shedded microorganisms in the feces may infect other animals as well as contaminate hides in abattoirs. Furthermore, the bacteria can be also transferred to the carcasses during the slaughter and dressing processes (**Bell**, **1997**).