

Effect of PECVD process parameters on structural transition of a-Si/µc-Si thin-film solar cell and its operational parameters

By Heba Ragab Abd El-aaty Mohamed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Metallurgical Engineering

Effect of PECVD process parameters on structural transition of a-Si/µc-Si thin-film solar cell and its operational parameters

By **Heba Ragab Abd El-aaty Mohamed**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in Metallurgical Engineering

Under the Supervision of

Prof. Dr.: Iman Salah El-din El-Mahallawi

Head of Mining, Petroleum, and Metallurgical Engineering department Faculty of Engineering Cairo University Prof. Dr. Madiha Ahmed Shoeib

Professor at surface treatment corrosion Central Metallurgical Research and Development Institute CMRDI

Dr: Osama Fouad Tobail

Researcher at Zewail City, Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Effect of PECVD process parameters on structural transition of a-Si/µc-Si thin-film solar cell and its operational parameters

By **Heba Ragab Abd El-aaty Mohamed**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Metallurgical Engineering

Approved by the Examining Committee

1. Prof. Dr.: Iman Salah El-din El-Mahallawi (Thesis Main Advisor)

Head of Mining, Petroleum, and Metallurgical Engineering department,

Faculty of Engineering,

Cairo University.

2. Prof. Dr. Madiha Ahmed Shoeib

(Advisor)

Professor at Surface treatment corrosion Lab,

Central Metallurgical Research and Development Institute CMRDI.

3. Prof. Dr. Nadia Hussein Rafat

(Internal Examiner)

Professor of Engineering Physics,

Faculty of Engineering,

Cairo University.

4. Dr. Yehia Mourad Mohamed Abdallah

(External Examiner)

Head of Development Sector,

National Organization for Military Production

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer's Name: Heba Regab Abd El-aaty Mohamed

Date of Birth: 04/08/1984 **Nationality:** Egyptian

E-mail: eng heba ragab@yahoo.com

Phone: 01155109118

Address: 1st settlement, New Cairo

Registration Date: 01/10/2012 **Awarding Date:** 01/10/2018

Degree: Doctor of Philosophy

Department: Mining, Petroleum, and Metallurgical Engineering

Supervisors:

Prof. Dr. Iman Salah El-din El-Mahallawi

Prof. Dr. Madiha Ahmed Shoeib

(Central Metallurgical R&D Institute (CMRDI))

Dr. Osama Fouad Tobail (Zewail City)

Examiners:

Prof. Dr. Iman Salah El-din El-Mahallawi

(Thesis Main Advisor)

Prof. Dr. Madiha Ahmed Shoeib (Advisor)

(Central Metallurgical R&D Institute (CMRDI))

Prof. Dr. Nadia Hussein Rafat (Internal Examiner)
Prof. Dr. Yehia Mourad Mohamed Abdallah (External
Examiner) National Organization for Military Production

Title of Thesis:

Effect of PECVD process parameters on structural transition of a-Si/ μ c-Si thin-film solar cell and its operational parameters

Key Words:

a-Si/ μ c-Si thin-film solar cell; Silver nanoparticles; light trapping; structural transition from a-Si to μ c-Si.

Summary:

In the first part of this work the Plasma Enhanced Chemical Vapor Deposition PECVD process parameters; namely dilution ratios and substrate temperature, were controlled to build i-layer at low dilution ratios with moderate substrate temperatures. An intrinsic layer was deposited on Indium Tin Oxide glass by PECVD technique, with different dilution ratios of silane in hydrogen and different substrate temperatures to study the transition from amorphous to microcrystalline phase. The Si:H thin film was evaluated by field emission scanning electron microscopy, x-ray diffraction and atomic force microscopy. The structural transition between a-Si:H to µc-Si:H was achieved at dilution ratio 13.3 and substrate temperature 250°C with surface roughness 22.5 nm. This condition was used to build a p-i-n junction. The second part of the work included using the p-i-n junction as a substrate and applying a silver nanoparticles layer by Physical Vapor Deposition (PVD) technique at different substrate temperatures. The microstructure and the morphology of the entire silver deposited a-Si:H/µc-Si:H p-i-n junction was studied by FESEM and atomic force microscope AFM. The performance of the a-Si:H/µc-Si:H solar cell was evaluated by current-voltage measurements and optical absorption. It was observed that PVD silver nanoparticles layer deposited at 200°C had a surface roughness of 88nm, which resulted an increase in the optical absorbance to 74% at 300nm wavelength with a cell efficiency of 7.38%.

ACKNOWLEDGMENT

My deep thanks to Allah who supported, guided and still supporting and guiding me to the right way.

Grateful acknowledgment is due to **Prof. Dr. Iman El-mahallawi** professor of Metallurgy Faculty of Engineering Cairo University suggesting the topic of this thesis and for much valuable guidance, useful advice, helpful suggestions, and discussion throughout the whole work.

I would like to express my gratitude to **Prof. Dr. Madihha Shoeib** head of Corrosion Control and Surface Protection Dept. at Central Metallurgical Research and Development Institute for her efforts, supervision, and valuable guidance throughout the whole work particularly during the experimental program and continuing encouragement.

I would also like to express my gratitude to **Dr. Osama Tobail** Lecturer, Faculty of Engineering, Zewail City, Cairo, Egypt- currently, and visiting researcher, Institute of photovoltaic for his efforts, supervision, and guidance throughout the experimental work.

I am very grateful to **Eng. Engy El-shazly** Renewable Energy Laboratory at **BUE** for supporting me during PV efficiency tests.

I wish to present, special word of gratitude and thank my family, especially to my parents, my father in law, brothers (**Mustafa, Walid**), sister (**Yasmin**) and my kids (**Nada, Adham**) for encouraging and pushing to complete this work.

Finally, my big thanks must be presented to my husband (**Eng. Ahmed**) for helpful suggestions, helping me in computer works, continuous encouraging and pushing to complete this work.

١

DEDICATION

I would like to thank and dedicate this thesis to my husband, Eng. Ahmed M. Fouad, and to my parents, who all have always supported me in my scientific work and whole life.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS.	III
LIST OF TABLES.	VII
LIST OF FIGURES.	VIII
NOMENCLATURE	X
ABSTRACT	XII
CHAPTER 1 : INTRODUCTION	
1.1. Introduction on PV technologies	
1.2. Fundamentals of photovoltaics	3
1.3. Second generation of PV technologies (thin film solar cells)	6
1.3.1. Physics of amorphous silicon thin film solar cells.	6
1.3.2. Light-induced degradation in a-Si:H solar cells.	9
1.3.3. Optical losses of thin film solar cells	9
1.3.4. Advantages of second generation solar cells	10
1.3.5. Disadvantages of second generation solar cells.	10
1.4. Deposition techniques of thin film solar cells	10
1.4.1. Chemical vapor deposition CVD	11
1.4.2. Physical vapor deposition PVD	12
1.5. Evaluation of the amorphous silicon thin film solar cells	13
1.5.1. Morphology characterization.	13
1.5.2. Evaluation the performance of amorphous silicon thin film solar cells	16
1.6. The objective of the work.	
1.7. Outline of thesis	
CHAPTER 2 : LITERATURE REVIEW	19
2.1. Introduction.	19
2.2. Importance of thin film solar cells and its extrinsic losses	19
2.3. Plasma enhanced chemical vapor deposition procedure	20
2.4. Plasma enhanced chemical vapor deposition parameters	22
2.4.1. The deposition time.	22
2.4.2. The substrate temperature.	23

2.4.3. The gas dilution ratio.	23
2.4.4. The gas pressure	24
2.4.5. The plasma power.	24
2.4.6. The plasma frequency	24
2.5. Physical vapor deposition procedure	25
2.6. Physical vapor deposition parameters	25
2.6.1. The deposition time	25
2.6.2. The vacuum pressure	26
2.6.3. The substrate temperature	26
2.7. The current state-of-the-art.	26
2.7.1. The effect of PECVD parameters on the light induced degradation	26
2.7.2. The effect of the dilution ratio on the crystallinity	27
2.7.3. The effect of the substrate temperature on the thin film solar cells	28
2.7.4. The effect of the annealing process on the thin film solar cells	28
2.7.5. The effect of the silver nanoparticles layer on the light trapping	29
2.7.6. Silver nanoparticle optical properties.	30
2.8. Identifying the gap in the current state of the art and the aim of work	32
CHAPTER 3: EXPERIMENTAL WORK	34
3.1. Introduction.	34
3.2. The plan of experimental work (PECVD)	34
3.3. Plasma enhanced chemical vapor deposition technique	35
3.4. The substrate and the deposited p-i-n layers materials of PECVD process	37
3.4.1. The ITO glass substrate.	37
3.4.2. The p-layer	37
3.4.3. The i-layer.	38
3.4.4. The n-layer	38
3.5. The deposition procedures (PECVD)	38
3.5.1. The ITO glass substrate preparation.	39
3.5.2. The deposition of the p-layer.	39
3.5.3. The deposition of the i-layer.	40
3.5.4. The deposition of the n-layer.	41
3.6. The plan of experimental work (PVD)	42
3.7. Physical vapor deposition (PVD) technique	42

3.8. The substrate and the deposited layers materials of PVD process	43
3.8.1. The p-i-n structure substrate	43
3.8.2. Silver nanoparticles deposition material.	43
3.9. The deposition procedures (PVD)	44
3.9.1. The p-i-n structure substrate preparation.	44
3.9.2. The deposition of silver nanoparticles layer.	44
3.10. Morphology characterization.	45
3.10.1. X-Ray diffraction technique	45
3.10.2. Field emission scanning electron microscope technique	46
3.10.3. Atomic force microscope technique.	46
3.11. Evaluation of the performance of the thin film solar cells	47
3.11.1. The current -voltage measurements technique.	47
3.11.2. The optical absorption measurement technique	48
CHAPTER 4: RESULTS AND DISCUSSION.	50
4.1. Introduction.	50
4.2. Morphology characterization.	50
4.2.1. X-Ray diffraction results.	51
4.2.1.1. The effect of gas dilution ratio on the deposited i-layer specimens	51
4.2.1.2. The effect of substrate temperature on the deposited i-layer specimens	52
4.2.2. Morphology of the ITO glass substrate.	54
4.2.3. Morphology of the deposited i-layer deposited specimens	55
4.2.3.1. The effect of the gas dilution ratio.	55
4.2.3.2. The effect of the substrate temperature.	59
4.2.4. Morphology of the deposited silver nanoparticles layer	62
4.2.4.1. The effect of the substrate temperature.	62
4.3. The current-voltage measurements results.	67
4.4. The optical absorption measurements results	70
CHAPTER 5: CONCLUSIONS	77
5. Conclusions.	77
6. Future work	79
DEEDENCES	80

	TABLE OF CONTENTS
APPENDIX	88
ARABIC ABSTRACT	Í

LIST OF TABLES

Table 1.1: Terminology for types of c-Si and a-Si	6
Table 1.2: The comparison between CVD and PVD techniques	
Table 3.1: The operation parameters of p- layer	39
Table 3.2: The operation parameters of i-layer with dilution ratio series	40
Table 3.3: The parameters of i-layer with substrate temperature series	41
Table 3.4: The operation parameters of n layer	42
Table 3.5: The deposition parameters of nano silver by PVD	
Table 4.1: I-V results of solar cell with silver nanoparticles film by PVD with	various
substrate temperatures	67
Table 4.2: The operation parameters of silver nanoparticles layer and the analy	sis results
of FESEM, AFM, I-V measurements and optical absorption	
Table 4.3: The comparison between our results and the previous results	

LIST OF FIGURES

Figure 1.1: Different types of solar cells.	2
Figure 1.2: The efficiencies were recorded for each PV solar cell type over years	
Figure 1.3: Diagram of a solar cell	
Figure 1.4: Charactristic I-V curves for a solar cell.	4
Figure 1.5: Crystalline, Polycrystalline and amorphous structure	
Figure 1.6: The structure of a-Si:H thin film solar cell.	
Figure 1.7: The absorption of a photon in a semiconductor	
Figure 1.8: Density of electronic states g(E) in hydrogenated amorphous silicon	
Figure 1.9: Process types of CVD technique	
Figure 1.10: Process types of PVD technique	
Figure 1.11: The column of field emission scanning electron microscope	
Figure 1.12: SEM images of AFM probes	
Figure 1.13: Diagram of an AFM setup	
Figure 1.14: Schematic illustration of XRD setup	
Figure 2.1: The deposition process chamber with it accessories	.20
Figure 2.2: schematic diagram of the chemical reactions that occur during PECVD	
process	21
Figure 2.3: Schematic diagram of PVD process	
Figure 2.4: Schematic diagram of thin film solar cell.	
Figure 2.5: Silver nanoparticles.	
Figure 2.6: The incident light is trapped by using silver nanoparticles	32
Figure 3.1: PECVD Device.	35
Figure 3.2: Gases line with valves that feed the PECVD device chamber	
Figure 3.3: PECVD device chamber	
Figure 3.4: PVD device	
Figure 3.5: X-ray diffraction device.	
Figure 3.6: Field emission scanning electron microscope device.	
Figure 3.7: Atomic force microscope device.	
Figure 3.8: PV system analyzer setup.	
Figure 3.9: Spectrophotometer V-770 Jasco device and its setup	
Figure 4.1: XRD patterns for the i-layer with the dilution ratio series at TS 250°C	. 51
Figure 4.2: XRD patterns for the i-layer with the substrate temperature series at rH	
13.3	53
Figure 4.3: FESEM image for ITO glass substrate	. 54
Figure 4.4: AFM images for ITO glass substrate.	55
Figure 4.5: FESEM images for the i-layer with different dilution ratios at TS 250°C	2.56
Figure 4.6: AFM images for the i-layer with the dilution series at TS 250°C	
Figure 4.7: The relation between rH and the surface roughness of the i-layer	58
Figure 4.8: FESEM images for the i-layer with different substrate temperatures at	
rH13.3	59
Figure 4.9: AFM images for the i-layer with different substrate temperatures at rH	

13.3	61
Figure 4.10: The relation between the substrate temperature and surface roughness	of
the i-layer	62
Figure 4.11: FESEM images for the silver nanoparticles layer with different substra	ate
temperatures	64
Figure 4.12: AFM images for the silver nanoparticles layer with different substrate	
temperatures	65
Figure 4.13: The relation between the substrate temperatures and the surface	
roughness of the silver nanoparticles layer	66
Figure 4.14: The relation between the substrate temperatures of the silver	
nanoparticles layer and the solar cell efficiency	69
Figure 4.15: Absorbance of a-Si:H/µc-Si:H thin film solar cell with silver	
nanoparticles layer deposited by PVD at different substrate temperatures	70
Figure 4.16: Camera image of all resulted specimens	.76