

Effect of antigenic mass and MDA on the efficacy of H5 inactivated avian influenza vaccine in commercial broiler chicken

A Thesis presented

By

Maha Magdy Sayed Metwally

(B.V.M. Sc., Cairo University, 2004)

Master in Veterinary Medical Science (Virology, 2009)

For PhD Degree

In Veterinary Medical Science, (Virology)

Under Supervision Of

Prof. Dr. Hussein Ali Hussein

Professor of Virology and Chairman of Department of Virology Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Mounir Mohamed Deiab El-Safty

Chief Researcher in Central Laboratory for Evaluation of Vet. Biologics, Director of National Project for Production of SPF Eggs

(2018)

قسم الفيروسات

كلية الطب البيطري

Approval Sheet

This is to approve that Thesis presented by Maha Magdy Sayed Metwally

For the degree of PhD. (Virology) has been approved by the examining committee.

Prof. Dr. Abd El-hakin Mahmoud Mohamed Ali

Head researcher & Director Central Laboratory for Evaluation of Veterinary Biologics CLEVB, Abbasia, Cairo

Prof. Dr- Ayman Hanea El-Deeb

Ass. Prof. of Virology Faculty of Veterinary Medicine Cairo University

Ayman El-Deeb

Prof. Dr- Mounir Mohamed Elsafty

Head researcher Central Laboratory for Evaluation of Veterinary Biologics CLEVB, Abbasia, Cairo (Supervisor)

Prof. Dr. Hussein Aly Hussein

Kussem Ahmed Professor and Head of Department of Virology Faculty of Veterinary Medicine Cairo University (Supervisor)

2018

الرمز البريدى: 12211 فاكس: <u>35725240</u>

العنوان: كلية الطب البيطري- الجيزة- مصر تليفون: <u>3571305 - 37510309</u>

Cairo University

Faculty of Veterinary Medicine

Department of Virology

Name: Maha Magdy Sayed Metwally

Nationality: Egyptian

Date and Place of Birth: 18/2/1983, Cairo

Degree: PhD in veterinary Medical Science

Specification: Virology

Thesis title : Effect of antigenic mass and MDA on the efficacy of H5

inactivated avian influenza vaccine in commercial broiler chicken

Supervisors : Prof. Dr. Hussein Ali Hussein

: Dr. Mounir Mohammed Deiab El-Safty

Abstract

In the current study two experiments were concluded. The first experiment was performed on 300 HAU vaccines (group 1, 2, 3 for local prepared, 4, 5, 6 for imported) while, the second one using 500HAU vaccines. Each experiment compare the effect of vaccination age (1, 5, 10 days) which reflects the effect of maternal derived antibodies on the vaccination. Challenge test revealed 0, 13, 80 % and 0, 13 and 86 % of protection in groups 1,2,3 and groups 4, 5, and 6; respectively. rRT-PCR and virus isolation revealed that vaccination at 1 and 5 days of age demonstrated 100% shedding at 3, 5, 7 and 10 days post challenge. However, groups 3 and 6 which were vaccinated at 10 days of age revealed difference in shedding pattern where group 3 (local prepared 300HAUvaccine) showed 100 shedding by rRT-PCR and 100%, 60% and 60 % of the chickens in tracheal swabs and 100%, 80% and 60% in cloacal swabs when tested by virus isolation in eggs at 3, 5, 7 and 10 days post challenge; respectively.

The second one applied to understand the differences in antigenic mass in H5 inactivated vaccine and it is greatly related to the reduction of virus shedding. HI significantly differ in relation of age of vaccination where the groups vaccinated at 10 days of age were significantly higher compared to others with maximum titers at 4 weeks post vaccination. The protection % revealed 0, 20, 86 % and 0, 20 and 86 % in groups 1, 2, 3 and groups 4, 5, and 6; respectively. Results of rRT-PCR and virus isolation revealed that all chicken groups vaccinated at 1 and 5 days of age revealed 100% shedding at 3rd,5th,7th and 10th days post challenge. However, groups 3 and 6 which were vaccinated at 10 days of age demonstrated different shedding pattern where group 3 (local prepared 500HAU vaccine) showed at the 3rd and 5th days shedding by rRT-PCR and 80% and 20 % of the chickens in tracheal swabs and 80% and 40% in cloacal swabs when tested by virus isolation in eggs at 3 and 5 days post challenge; respectively. Whereas swabs of 7 and 10 days post challenge of group 3 were negative by rRT-PCR and virus isolation. In the other hand, group 6 (imported 500HAU vaccine) demonstrated shedding % at 3 and 5 days post challenge by rRT-PCR and for virus isolation were positive in 60% for tracheal swabs 3 day post challenge and no shedding at 5th post challenge and 60% and 20% for cloacal swabs; respectively. At 7th and 10th days post challenge shedding of all chickens in group 6 were negative by both rRT-PCR and virus isolation. The study highlights the importance of both time of vaccination and antigenic content of the inactivated H5 vaccines.

ACKNOWLEDGMENT

I am greatly indebted in all my work and success to our merciful "Allah".

I would like to express my cardiac thanks to my major supervision **Prof. Dr. Hussein Ali Hussein**, professor of virology ,faculty of veterinary medicine, Cairo University under whose stimulating supervision, guidance and criticism, this work was carried out. I heartly thank him very much for this valuable help. He gave me the best example what a university professor should be.

Thanks for every kind advised help given to me. I express my sincere gratitude to his suggestions and advice. By **Dr. Mounir Mohamed Deiab EL-Safty** ,SPF department, CLEVB, Abassia, Cairo. I express my sincere gratitude to him for his suggestions and advice. Indeed, his constant and willing guidance can never be given sufficient gratitude.

I would like also to express my appreciation and high respective acknowledgment to **Dr. Abdelhakim M. M. Ali**, director of CLEVB, for his support and kind advice, and unfitting help through my study.

I wish to express my thanks to the staff members of Newcastle disease department, serum and vaccine research institute, Abassia, Cairo, With special thanks to **Dr. Mohamed Madkour**.

My gratitude extend to all stuff members of my department (Reference strain bank).

I would like to thank all my colleague and personnel (Doctors, Technician and workers) of CLEVB.

Dear friends Hala A., Marwa F., Hala M., Nehal K., Dina A.

My Dear Father and Mother

My Dear husband Essam

My Dear Father-in-law and Mother-in-law

My Kids Mazen, Malak and Mariam

My sister

List of content

1 Introduction	1
1. Introduction 2. Review of literature	5
2.1. Avian influenza	5
2.1.1. Definition and synonyms	5
2.1.1.1 Definition 2.1.1.1. Definition	5
· ·	5
2.1.1.2. Synonyms	5
2.1.2. Historical Background of AIV 2.1.2.1. AIV in the world	5
	8
2.1.2.2. AIV in Egypt	
2.1.3. Etiology/Causative agent	13
2.1.3.1. Classification of AIV	13
2.1.3.2. Virus Structure and Genomic Organization	14
2.1.3.3. Susceptibility of Avian Influenza Virus to Chemical and Physical Agents	17
2.1.3.4. Antigenic properties of AI virus	18
2.1.3.4.1. Haemagglutinin and haemagglutination properties	19
2.1.3.4.1.1. Antigenic property of virus haemagglutinin (HA)	19
2.1.3.4.1.2. Haemagglutination properties	20
2.1.3.4.2. Neuraminidase and its function	21
2.1.3.5. Antigenic variation of AI virus strains	21
2.1.3.5.1 Antigenic variation of AI virus strains 2.1.3.5.1 Antigenic drift	21
	22
2.1.3.5.2. Antigenic shift (Reassortment) 2.1.3.6. Avian Influenza Virus Replication	23
	25
2.2. Diagnosis of Avian Influenza	25
2.2.1. Field diagnosis 2.2.1.1.Morbidity and Mortality	
2.2.1.1.1.Morbiany and Moriany 2.2.1.2. Incubation Period	25 25
2.2.1.3. Clinical signs	26
2.2.1.4. Post Mortem Lesions	26
2.2.2. Laboratory diagnosis of Avian Influenza	28
2.2.2.1. Virus Isolation	28
2.2.2.2. Virus identification	28
2.3. Immunity against Avian Influenza Virus:	31
2.3.1. Active Immunity	31
2.3.1.1. Humeral immunity	31
2.3.1. 2. Cellular immunity	33
2.3.2. Passive immunity	35
2.4. Avian influenza vaccines	36
2.4.1. Administration of AI Vaccines	38
2.4.1.1. Post hatch Parenteral Administration	38
2.4.1.2. Mass Administration	38
2.4.1.3. In ovo administration	39
2.4.1.4. Respiratory administration (spray and eye drop)	39
2.4.1.5. Alimentary administration (drinking water and feed)	40
2.4.2. Types of Avian Influenza vaccines	42

2.4.2.1. Inactivated Whole Avian Influenza Virus Vaccines	43
2.4.2.1. Inditivated whole Avian Inquienza virus vaccines 2.4.2.2. Recombinant AI vaccine	50
2.4.2.3. Live Avian Influenza Virus Vaccines	51
2.4.2.4. DNA Vaccine	52
	53
2.4.2.5. In Vitro expressed AIV proteins based vaccines	54
2.4.2.6. In Vivo expressed AIV proteins based vaccines	
2.4.2.7. The tissue culture vaccine	55
2.4.3. vaccination failure	57
2.5.Shedding pattern in LPAI and HPAI viruses	59
2.6. Prevention and Control of avian influenza infection	62
3. Material and Methods	63
3.1 Material	63
3.1.1. Virus strains	63
3.1.1.1. Vaccine Seed Virus	63
3.1.1.2. Challenge Virus	63
3.1.2. Embryonated Chicken Eggs (ECE)	63
3.1.3. Experimental chicks	63
3.1.4. Washed chicken erythrocyte	64
3.1.5. Serum samples	64
3.1.6. Biological materials and Media	64
3.1.6.1. Nutrient agar medium	64
3.1.6.2. Thioglycolate broth	64
3.1.6.3. Sabaroud dextrose agar	64
3.1.7. Chemical reagents and solutions	65
3.1.7.1. Physiological Buffer Saline (0.85% - PH 7.2)	65
3.1.7.2. Phosphate Buffer Saline (PBS)	65
3.1.7.3. Sterile buffered saline	65
3.1.7.4. Antibiotic solution	65
3.1.7.5. Sodium thiosulphate solution (Merck, Germany)	65
3.1.7.7. Montanide ISA70 adjuvant	65
3.1.8. Materials used for viral RNA extraction	66
3.1.8.1. QIAamp - Viral RNA Mini Kit (QIAGEN) catalogue No. 52904.	66
3.1.8.2. Material used for amplification of viral mRNA by r RT-PCR	66
3.2. Methods	67
3.2.1 Vaccine preparation	67
3.2.1.1 300 HAU Vaccine preparation	67
3.2.1.1.1. Propagation of the AI virus in embryonated chicken eggs	67
3.2.1.1.2. Titration of the virus (harvested allantoic fluid) in SPF-ECE	67
3.2.1.1.4. Inactivation of the propagated virus suspension with formalin	67
3.2.1.1.5. Infectivity test for testing Completion of inactivation	68
3.2.1.1.6. Preparation of inactivated AIV (H5N1) vaccines with ISA70	68
adjuvant	08
3.2.1.1.7. Rapid slide Haemagglutination test	68
3.2.1.2. 500 HAU Vaccine preparation	68
3.2.2. Quality control of the prepared vaccines	69
3.2.2.1 Sterility test	69

3.2.2.2. Safety test	69
3.2.3. Waning of maternal immunity in chicks	69
3.2.4. Experimental design for evaluating the potency of prepared vaccines	69
3.2.4. 1. Haemagglutination (HA) and Haemagglutination inhibition	70
(HI) test	, 0
3.2.4. 1.1. Haemagglutination test (HA)	71
3.2.4. 1.2. Haemagglutination inhibition (HI) test	72
3.2.1.6. Challenge test of inactivated viral vaccines (Code of American	72
Federal Regulations, 2012)	
3.2.1.7. Re-isolation of Virus shedding titer for real time RT-PCR and	73
Virus inoculation in SPF-ECE	
3.2.1.7.1. Virus detection by real time RT-PCR	73
3.2.1.7.2. Virus re-isolation and detection in embryonated chicken egg	75
3.2.1.8. Statistics	76
4. Results	
4.1. Propagation and titration of AIV (H5N1) on SPF-ECEs	78
4.2. Inactivation of AIV (H5N1) by 0.1% formalin	78
4.3. Completion of inactivation	78
4.4. Quality control tests of the prepared inactivated AIV (H5N1) vaccines	79
4.4.1. Sterility test	79
4.4.2. Safety test	79
4.5. Evaluation of the efficacy of the 300HA unit prepared and imported	80
vaccines	
4.5.1. Waning of Maternal immunity of non-vaccinated broilers chickens	80
acquired from vaccinated parents	
4.5.2. Evaluation of humeral immune response to the H5N1 vaccines	81
4.5.3.Protection % against challenge with HPAIV	83
4.5.4.Virus shedding post challenge	84
4.6. Evaluation of the efficacy of the 500HA unit prepared and imported	88
vaccines	
4.6.1. Waning of Maternal immunity of non-vaccinated broilers chickens	88
acquired from vaccinated parents	
4.6.2. Evaluation of humeral immune response to the H5N1 vaccines	88
4.6.3. Protection % against challenge with HPAIV	90
4.6.4.Virus shedding post challenge	91
5. Discussion	95
<u>6. Summery</u>	104
8. Reference	107
9. Arabic abstract	
10. Arabic summary	

List of Tables

THE CAMPAIGNESS CONTRACTOR	
Table (1). Titration of AIV (H5N1) on SPF-ECEs	78
Table (2). Results of sterility test of the prepared inactivated AIV (H5N1) vaccines	79
Table (3). Results of safety test of the prepared inactivated AIV (H5N1) vaccines	79
Table (4). Results of maternal immunity in unvaccinated chicks	80
Table (5). Serum antibody response following vaccination with local and imported inactivated AIV (H5N1) vaccines containing 300 HAU in chicken groups at different ages	81
Table (6). Results of rRT- PCR and virus isolation in SPF ECE for tracheal swabs collected from chickens vaccinated with local or imported Inactivated AIV (H5N1) vaccines containing 300HAU	85
Table (7). Results of rRT- PCR and virus isolation in SPF ECE for cloacal swabs collected from chickens vaccinated with local or imported Inactivated AIV (H5N1) vaccines containing 300HAU	87
Table (8). Serum antibody response following vaccination with local and imported inactivated AIV (H5N1) vaccines containing 500 HAU in chicken groups at different ages	88
Table (9). Results of rRT- PCR and virus isolation in SPF ECE for tracheal swabs collected from chickens vaccinated with local or imported Inactivated AIV (H5N1) vaccines containing 500HAU	92
Table (10). Results of rRT- PCR and virus isolation in SPF ECE for cloacal swabs collected from chickens vaccinated with local or imported Inactivated AIV (H5N1) vaccines containing 500HAU	94