

PROPOSED METHOD FOR COST ASSESSMENT OF SEISMIC MITIGATION DESIGNS FOR REINFORCED CONCRETE BUILDINGS

By

Yasser Mohamed Abdel-Hameed Fayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

PROPOSED METHOD FOR COST ASSESSMENT OF SEISMIC MITIGATION DESIGNS FOR REINFORCED CONCRETE BUILDINGS

By

Yasser Mohamed Abdel-Hameed Fayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTER OF SCIENCE

in STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Mohamed Ezzat Sobaih Prof. Dr. Yasser El-Hakem

Professor of Structures Structural Engineering Department Faculty of Engineering, Cairo University Professor, and Deputy Director Construction Research Institute National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

PROPOSED METHOD FOR COST ASSESSMENT OF SEISMIC MITIGATION DESIGNS FOR REINFORCED CONCRETE BUILDINGS

By Yasser Mohamed Abdel-Hameed Fayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Mohamed Ezzat Sobaih, Thesis Main Advisor

Prof. Dr. Yasser El-Hakem, Advisor
- Construction Research Institute, National Water Research Center

Prof. Dr. Magdy El-Sayed Kasem, Internal Examiner

Prof. Dr. Ahmed Shawky Hashad, External Examiner

- Construction Research Institute, National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer's Name: Yasser Mohamed Abdel Hameed Fayed

Date of Birth: 15/7/1992 **Nationality:** Egyptian

E-mail: Yasser.fayed3011@gmail.com

Phone: 01064488695
Address: Egypt - Cairo
Registration date: 01/03/2015
Awarding date: .../.../2018

Degree: Master of Science **Department:** Structural Engineering

Supervisors: Prof. Dr. Mohamed Sobaih

Prof. Dr. Yasser El-Hakem

Construction Research Institute, National Water Research Center

Examiners: Prof. Dr. Ahmed Shawky Hashad (External Examiner)

Construction Research Institute, National Water Research Center
Prof. Dr. Magdy El- Sayed Kasem (Internal Examiner)
Prof. Dr. Mohamed Ezzat Sobaih (Thesis Main Advisor)
Prof. Dr. Yasser El-Hakem (Advisor)

Construction Research Institute, National Water Research Center

Title of Thesis: Proposed Method for Cost Assessment of Seismic Mitigation

Designs for Reinforced Concrete Building

Key Words:

Performance based analysis, Pushover analysis, Cost assessment, Crack width.

Summary:

The analysis methods used to design the structures to resist earthquake load ranges from equivalent linear static analysis to nonlinear dynamic analysis. Each seismic mitigation design for the structure influence its life cycle cost that includes the construction cost and repairing cost after earthquake damage. It is necessary to perform a cost assessment for each seismic mitigation design to know the effective design on the building life cycle cost.

The methodology followed in this study provides initial guidelines to assess the cost associated with using a variety of design methods for reinforced concrete structures, developing a performance based analysis to get the weakness points in the structure after earthquake, select the retrofitting strategies that would be indicated to repair the structure after the earthquake, and to assess the results founded from each design method or different design codes.

Acknowledgments

I have a deeply grateful to both the supervisors of my thesis, **Prof. Dr. Mohamed Sobaih**, Professor of Structures, Faculty of Engineering, Cairo University and **Prof. Dr. Yasser El-Hakem**, Professor, and Deputy Director, Construction Research Institute, National Water Research Center. In different ways, they gave a tremendous contribution by providing valuable guidance and advice. They have been always readily available for whatever was needed, even when they were clearly overloaded. From my experience as their student in regular Civil Engineering courses, and now in the scope of this dissertation, I consider them a reference and role model as Professors.

I am also grateful to **Dr. Ibrahim Gaafar** and **Eng. Amr Abdel baset** at the National Water Research Center, They spent a substantial amount of time on developing and training me into a better scholar and researcher. Their guidance and inspiration contributed to my academic success and completion of this dissertation. Their academic competence guaranteed timely progress of my research

Dedication

I dedicate this thesis to the people who devoted their lives to make me a successful person, my **Father**, my **Mother**, my **Sister**.

Gratitude and appreciation cannot describe my feelings towards them.

Table of Contents

AC	CKNOWLEDGEMENTS	I
DE	DICATION	II
TA	BLE OF CONTENTS	III
LIS	ST OF TABLES	VI
LIS	ST OF FIGURES	VIII
AB	STRACT	X
CH	APTER 1: INTRODUCTION	1
1.1.	GENERAL	1
1.2.	STATEMENT OF THE PROBLEM	1
1.3.	OBJECTIVE OF THE STUDY.	1
1.4.	OUTLINE OF THESIS.	2
1.5.	PROPOSED METHODOLOGY	2
CH	APTER 2: LITERATURE REVIEW	4
2.1.	GENERAL	4
2.2.	EQUIVALENT STATIC METHOD ACCORDING TO ECP (2012)	4
2.3.	EQUIVALENT STATIC METHOD ACCORDING TO EGYPTIAN SOCIETY FOR EARTHQUAKE ENGINEERING (ESEE)	7
2.4.	PUSHOVER ANALYSIS	16
2.4	4.1. Types of Pushover Analysis	17
	2.4.1.1. Capacity Spectrum Method	17
	2.4.1.2. Load – Displacement Control Method	17
2.5.	ASSUMPTIONS IN MATERIAL CONSIDERED IN THE ANALYTICA MODEL	
2.6.	STRESS – STRAIN RELATION OF CONCRETE AND STEEL	
2.7.	PERFORMANCE BASED ANALYSIS	20
2.8.	CRACKING LIMIT STATE ACCORDING TO EGYPTIAN CODE	
2.9.	CRACK WIDTH ACCORDING TO SOME BUILDING CODES PROVISIONS.	28
2.9	9.1. Eurocode2 1992-1 (2001)	28
2	9.2 ACI 318	29

2.9.3. Briti	sh Standards BS 8110-1997	30
	NIQUES OF REPAIRING OF REINFORCED CONCRETE CTURES	40
2.10.1. Re	pairing of Cracks	40
2.10.2. Ty	pes of Cracks	41
2.10.3. Te	chniques of Repairing of Reinforced Concrete Structures	41
2.10.3.	1. Bonding with Epoxies	41
2.10.3.2	2. Routing and Sealing	42
2.10.3.3	3. Stitching	43
2.10.3.4	4. External Stressing	43
2.10.3.5	5. Grouting	44
2.10.3.6	6. Repairing Spalling and Disintegration	44
2.10.3.7	7. Shotcrete	44
2.10.3.8	3. Jacketing	46
CHAPTER :	3: SUGGESTED METHODOLOGY	53
3.1. GENERA	AL	53
3.2. DESCRI	PTION OF THE CASE STUDY BUILDING	53
3.2.1. Case	e Study (1)	54
3.2.1.1.	Design Results	54
3.2.1.2.	Construction Bill of Quantities for the Designed Structure	56
3.2.1.3.	Performance based analysis for the Designed Structure	57
3.2.1.4.	Capacity Curve	58
3.2.1.5.	Plastic Hinge Mechanism	59
3.2.1.6.	Plastic moment at collapse	61
3.2.1.7. EO Occi	Crack Width Value for Beams and Columns after urrence	63
	Study (2)	
3.2.2.1.	Design Results	
3.2.2.2.	Construction Bill of Quantities for the Designed Structure	
3.2.2.3.	Performance based analysis for the Designed Structure	
3.2.2.4.	Capacity Curve	
3.2.2.5.	Plastic Hinge Mechanism	
3.2.2.6.	Plastic moment at collapse	
3.2.2.7. EO Occu	Crack Width Value for Beams and Columns after	73

3.2	2.3. Case	e Study (3)	74
	3.2.3.1.	Design Results	75
	3.2.3.2.	Construction Bill of Quantities for the Designed Structure	77
	3.2.3.3.	Performance based analysis for the Designed Structure	78
	3.2.3.4.	Capacity Curve	78
	3.2.3.5.	Plastic Hinge Mechanism	79
	3.2.3.6.	Plastic moment at collapse	83
	3.2.3.7.	Crack Width Value for Beams and Columns after	0.5
2.2		arrence	
3.2		Study (4)	
	3.2.4.1.	Design Results	
	3.2.4.2.	Construction Bill of Quantities for the Designed Structure	
	3.2.4.3.	Performance based analysis for the Designed Structure	
	3.2.4.4.	Capacity Curve	
	3.2.4.5.	Plastic Hinge Mechanism	
	3.2.4.6.	Plastic moment at collapse	93
	3.2.4.7. EQ Occi	Crack Width Value for Beams and Columns after urrence	95
CH		4: LEVELS OF DAMAGE, AND REPAIRING CHNIQUES OF THE STRUCTURE	96
4.1.		GE LEVEL OF THE STRUCTURE	
4.2.	REPAII	RING TECHNIQUES OF THE STRUCTURE	96
4.3.		JLATION OF CRACK WIDTH AND CRACK LENGTH IN	98
4.4.		JLATION OF CRACK WIDTH IN COLUMNS	
4.5.		RING COST FOR EACH DESIGN CASE FOR THE	100
		COST FOR EACH DESIGN CASE FOR THE	102
		pairing Cost for Case (1) Design	
4.5	5.2. Rep	pairing Cost for Case (2) Design	102
4.5	5.3. Re	pairing Cost for Case (3) Design	102
4.5	5.4. Rep	pairing Cost for Case (4) Design	102
4.6.	ANALY	YSIS OF RESULTS	103
CH	APTER	5: SUMMARY AND CONCLUSION	105
5.1.	GENER	RAL	105
5.2.	SUMM	ARY	105

REF	ERENCES	112
5.5.	RECOMMENDATIONS FOR FUTURE STUDIES	110
5.4.	CONCLUSIONS	110
EVAI	LUATION AND COST ASSESSMENT MENTIONED IN THIS STUDY	.105
5.3. T	THE STEPS AND METHODOLOGY REQUIRED FOR STRUCTURAL	

List of Tables

TABLE 2.1: SEISMIC ZONES AND RELATED DESIGN GROUND ACCELERATION [1]	6
TABLE 2.2: IMPORTANCE FACTOR (I) [2]	8
TABLE 2.3: STRUCTURAL SYSTEM TYPE FACTOR (S) [2]	8
TABLE 2.4: MATERIAL FACTOR (M) [2]	9
TABLE 2.5: RISK FACTOR (R) [2]	9
TABLE 2.6: CLASSIFICATION OF HAZARD MAPS [3]	
TABLE 2.7: PERFORMANCE LEVEL OF BUILDING [11]	21
TABLE 2.8: DAMAGE CLASS DEFINITION OF R.C COLUMNS AND WALLS [13]	33
TABLE 2.9: LIMIT STATES AND DAMAGES ACCORDING TO THE CRACK WIDTH AND I	TS
REPAIRING TECHNIQUES [28]	36
TABLE 2.10: DAMAGE STATES, DRIFT RATIO LIMITS AND CORRESPONDING COSTS	
(ATC-13 1985) [30]	37
TABLE 2.11: REPAIR METHOD AND REPAIR COST BY DAMAGE CLASS [15]	39
TABLE 3.1: ASSUMPTIONS OF THE MODEL	54
TABLE 3.2: BEAMS DIMENSIONS AND REINFORCEMENT FOR CASE (1)	54
TABLE 3.3: COLUMNS DIMENSIONS AND REINFORCEMENT FOR CASE (1)	55
TABLE 3.4: FOOTING DIMENSIONS AND REINFORCEMENT FOR	
CASE (1)	56
TABLE 3.5: TIE BEAMS DIMENSIONS AND REINFORCEMENT FOR CASE (1)	56
TABLE 3.6: THE FORCE ON EACH FLOOR USED FOR PUSH OVER ANALYSIS FOR	
CASE (1)	57
TABLE 3.7: THE PUSHOVER RESULTS FOR BASE SHEAR AND ROOF DISPLACEMENT I	
X - DIRECTION FOR EACH STEP FOR CASE(1)	58
TABLE 3.8: THE FORCE ON EACH FLOOR, SHEAR FORCE AND OVERTURNING	c۳
MOMENT FOR CASE (2) TABLE 3.9: BEAMS DIMENSIONS AND REINFORCEMENT FOR CASE (2)	
TABLE 3.10: COLUMNS DIMENSIONS AND REINFORCEMENT FOR CASE (2)	
TABLE 3.11: FOOTING DIMENSIONS AND REINFORCEMENT FOR CASE (2)	
TABLE 3.12: TIE BEAMS DIMENSIONS AND REINFORCEMENT FOR CASE (2)	
TABLE 3.13: THE PUSHOVER RESULTS FOR BASE SHEAR AND ROOF DISPLACEMENT	
X - DIRECTION FOR EACH STEP FOR CASE (2)	
	03
TABLE 3.14: THE FORCE ON EACH FLOOR, SHEAR FORCE AND OVERTURNING	
MOMENT FOR CASE (3)	
TABLE 3.15: BEAMS DIMENSIONS AND REINFORCEMENT FOR CASE (3)	
TABLE 3.16: COLUMNS DIMENSIONS AND REINFORCEMENT FOR CASE (3)	
TABLE 3.17: FOOTING DIMENSIONS AND REINFORCEMENT FOR CASE (3)	
TABLE 3.18: TIE BEAMS DIMENSIONS AND REINFORCEMENT FOR CASE (3)	77

TABLE 3.19: THE PUSHOVER RESULTS FOR BASE SHEAR AND ROOF DISPLACE	:MENT IN
X - DIRECTION FOR EACH STEP FOR CASE (3)	79
TABLE 3.20: THE FORCE ON EACH FLOOR, SHEAR FORCE AND OVERTURNING	ì
MOMENT FOR CASE (4)	87
TABLE 3.21: BEAMS DIMENSIONS AND REINFORCEMENT FOR CASE (4)	87
TABLE 3.22: COLUMNS DIMENSIONS AND REINFORCEMENT FOR CASE (4)	88
TABLE 3.23: FOOTING DIMENSIONS AND REINFORCEMENT FOR CASE (4)	89
TABLE 3.24: TIE BEAMS DIMENSIONS AND REINFORCEMENT FOR CASE (4)	89
TABLE 3.25: THE PUSHOVER RESULTS FOR BASE SHEAR AND ROOF DISPLACE	MENT IN
X - DIRECTION FOR EACH STEP FOR CASE (4)	91
TABLE 4.1: DAMAGE LEVELS ACCORDING TO THE CRACK WIDTH AND IT'S REI	PAIRING
TECHNIQUES	96
TABLE 4.2: REPAIRING COST ACCORDING TO DAMAGE LEVEL	97
TABLE 4.3: ASSESSMENT RESULTS FOR EACH DESIGN CASE	103
TABLE 5.1: CONSTRUCTION COST FOR THE BUILDING	106
TABLE 5.2: THE EQ FORCE ON EACH FLOOR	107
TABLE 5.3: DAMAGE LEVELS ACCORDING TO THE CRACK WIDTH AND IT'S REI	PAIRING
TECHNIQUES	109
TABLE 5.4: REPAIRING COST ACCORDING TO DAMAGE LEVEL	109

List of Figures

FIGURE	2.1: SEISMIC ZONE REGIONS O EGYPT [1]	6
	2.2: COEFFICIENT OF THE STANDARDIZED RESPONSE SPECTRUM FOR AVERAGE DAMPING OF 5% [2]	0
	2.3: THE HAZARD MAP FOR EXPOSURE PERIOD OF 50 YEARS AND NON- EXCEEDANCE PROBABILITY OF 80% [3]	
FIGURE	2.4: THE HAZARD MAP FOR EXPOSURE PERIOD OF 100 YEARS AND NON- EXCEEDANCE ROBABILITY OF 80% [3]1	2
FIGURE	2.5: THE HAZARD MAP FOR EXPOSURE PERIOD OF 100 YEARS AND NON- EXCEEDANCE PROBABILITY OF 85% [3]	2
FIGURE	2.6: THE HAZARD MAP FOR EXPOSURE PERIOD OF 100 YEARS AND NON- EXCEEDANCE PROBABILITY OF 90% [3]	3
FIGURE	2.7: THE HAZARD MAP FOR EXPOSURE PERIOD OF 200 YEARS AND NON- EXCEEDANCE PROBABILITY OF 90% [3]	3
FIGURE	E 2.8: THE HAZARD MAP FOR EXPOSURE PERIOD OF 500 YEARS AND NON- EXCEEDANCE PROBABILITY OF 90% [3]14	4
FIGURE	2.9: ILLUSTRATION OF PUSHOVER ANALYSIS [7] 1	6
FIGURE	2.10: IDEALIZED STRESS – STRAIN RELATIONSHIP FOR CONCRETE [10] 1	8
FIGURE	2.11: IDEALIZED STRESS – STRAIN RELATIONSHIP FOR STEEL [10] 1	9
	2.12: MOMENT-CURVATURE CURVE AS ONE OF THE KEY INPUTS IN PERFORMANCE BASED DESIGN USING PUSHOVER ANALYSIS [9]2	0
FIGURE	2.13: TYPICAL LOAD-DEFORMATION RELATION AND TARGET PERFORMANCE	:
	LEVEL (FEMA-356) [12]	
	2.14: DAMAGE CLASS VS. LOAD CARRYING CAPACITY [14]	
FIGURE	2.15: CAPACITY SPECTRUM PROCEDURE TO DETERMINE	
	PERFORMANCE [15]	2
FIGURE	2.16: PROCEDURE FOR DAMAGE EVALUATION OF R/C FRAME	
	STRUCTURE [14]	2
FIGURE	2.17: DAMAGE CLASS III SHAPE ACCORDING TO THE CRACK WIDTH [13] 3	3
FIGURE	2.18: DAMAGE CLASS IV SHAPE ACCORDING TO THE CRACK WIDTH [13] 3	4
FIGURE	2.19: DAMAGE CLASS V SHAPE ACCORDING TO THE CRACK WIDTH [13] 3 $$	4
	2.20: FLEXURAL AND SHEAR DEFORMATION SUMS TO THE DEFORMATION	
	OF MEMBERS [28]	5
	2.21: TELL TALES TO DETERMINE WHETHER THE CRACKS ARE ACTIVE OR DORMANT [33]4	0
	2.22: INJECTING EPOXY AND SEALING [34] 4	
	2.23: ROUTING AND SEALING [33]	
	2.24: STITCHING TECHNIQUE [33] 4	

FIGURE	2.25: EXTERNAL STRESSING TO CLOSE CRACKS [33]	
FIGURE	2.26: SHOTCRETE INSTALLMENT IN SITE [34]	
FIGURE	2.27: SHOTCRETE INSTALLMENT IN SITE [34]	
FIGURE	2.28: COLUMN JACKET [33]	
FIGURE	2.29: COLUMN JACKET IMPLEMENTING IN SITE [34]	
FIGURE	2.30: BEAM JACKET [33]	
FIGURE	2.31: BEAM JACKET IMPLEMENTING IN SITE [34]	
FIGURE	2.32: BEAM JACKET IMPLEMENTING IN SITE [34] 50	
FIGURE	2.33: BEAM JACKET IMPLEMENTING IN SITE [34]	
FIGURE	2.34: BEAM-COLUMN JACKET IMPLEMENTING IN SITE [34] 52	
FIGURE	3.1 A: SLAB LAYOUT	
FIGURE	3.1 B: SLAB REINFORCEMENT	
FIGURE	3.2: 3D MODEL SAP2000 STRUCTURE LAYOUT	
FIGURE	3.3: FOUNDATION LAYOUT FOR CASE (1) DESIGN	
	3.4: PUSHOVER CURVE FOR THE BUILDING IN X, Y DIRECTIONS FOR CASE (1) DESIGN	
	3.5: KEY PLAN FOR BUILDING ELEVATIONS	
FIGURE	3.6 A TO E: PLASTIC HINGE PATTERN FORMATION FOR BUILDING AT STEP 1,2,3,4,5 FOR CASE (1) DESIGN	
FIGURE	3.7 A,B: MOMENT ON COLUMNS FOR CASE (1) DESIGN (T.M)	
FIGURE	3.8 A,B: MOMENT ON BEAMS FOR CASE (1) DESIGN (T.M)	
FIGURE	3.9 A,B: AXIAL FORCE FOR COLUMNS FOR CASE (1) DESIGN (T)	
	3.10 A,B: CRACK WIDTH FOR BEAMS AND COLUMNS FOR CASE (1) (MM)	
FIGURE	3.11: FOUNDATION LAYOUT FOR CASE (2) DESIGN	
	3.12: PUSHOVER CURVE FOR THE BUILDING IN X, Y DIRECTIONS FOR CASE (2) DESIGN	
	3.13 A TO F: PLASTIC HINGE PATTERN FORMATION FOR BUILDING AT STEP 1,2,3,4,5,6 FOR CASE (2) DESIGN	
FIGURE	3.14 A,B: MOMENT ON COLUMNS FOR CASE (2) DESIGN (T.M) 71	
FIGURE	3.15 A,B: MOMENT ON BEAMS FOR CASE (2) DESIGN (T.M) 72	
FIGURE	3.16 A,B: AXIAL FORCE FOR COLUMNS FOR CASE (2) DESIGN (T)	
	3.17 A,B: CRACK WIDTH FOR BEAMS AND COLUMNS FOR CASE (2) (MM)	
	3.18: FOUNDATION LAYOUT FOR CASE (3) DESIGN	
FIGLIRE	3.19: PUSHOVER CURVE FOR THE BUILDING IN X. Y DIRECTIONS FOR	

	CASE(3)DESIGN	,
	3.20 A TO O: PLASTIC HINGE PATTERN FORMATION FOR BUILDING AT STEP	
	TO 12 FOR CASE (3) DESIGN 80)
FIGURE	3.21 A,B: MOMENT ON COLUMNS FOR CASE (3) DESIGN (T.M)	
FIGURE	3.22 A,B: MOMENT ON BEAMS FOR CASE (3) DESIGN (T.M)	
FIGURE	3.23 A,B: AXIAL FORCE FOR COLUMNS FOR CASE (3) DESIGN (T)	
FIGURE	3.24 A,B: CRACK WIDTH FOR BEAMS AND COLUMNS FOR	
	CASE(3)(MM)85	5
FIGURE	3.25: FOUNDATION LAYOUT FOR CASE (4) DESIGN88	3
FIGURE	3.26: PUSHOVER CURVE FOR THE BUILDING IN X, Y DIRECTIONS FOR	
	CASE(4)DESIGN)
FIGURE	3.27 A TO F: PLASTIC HINGE PATTERN FORMATION FOR BUILDING AT STEP	
	1 TO 12 FOR CASE (4) DESIGN 92	2
FIGURE	3.28 A,B: MOMENT ON COLUMNS FOR CASE (4) DESIGN (T.M)93	3
FIGURE	3.29 A,B: MOMENT ON BEAMS FOR CASE (4) DESIGN (T.M)94	1
FIGURE	3.30 A,B: AXIAL FORCE FOR COLUMNS FOR CASE (4) DESIGN (T)94	1
	3.31 A,B: CRACK WIDTH FOR BEAMS AND COLUMNS FOR	
	CASE (4) (MM)95	
FIGURE	1.1: THE PLASTIC MOMENT IN BEAMS DUE TO EARTHQUAKE AND THE CRACK MECHANISM ACCORDING TO THE MOMENT98	
EIGLIRE	4.2: THE PLASTIC MOMENT IN COLUMNS DUE TO EARTHQUAKE AND THE	
HOOKE	CRACK MECHANISM ACCORDING TO THE MOMENT)
FIGURE	1.3: REPAIRING COST AND CONSTRUCTION COST FOR EACH DESIGN	
	CASE	,
FIGURE	4.4: CAPACITY CURVES FOR EACH DESIGN CASE IN (T.M)104	ŀ
FIGURE	5.1: 3D MODELS FOR THE FOUR DESIGN CASES BY SAP2000 SOFTWARE 106	5
FIGURE	5.2: PUSH OVER CURVE OF THE BUILDING107	7
FIGURE	5.3: PLASTIC HINGE PATTERN FOR AT DIFFERENT PERFORMANCE LEVEL BY	
SAP 200	O SOFTWARE 107	7
FIGURE	5.4: PLASTIC MOMENT FOR COLUMNS AND BEAMS108	ļ
FIGURE	5.5: CRACK WIDTH VALUES (WK) FOR COLUMNS AND BEAMS 108	3