Dexamethasone Effect on Induction-delivery Interval at Term Randomized Controlled Trial

Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics and Gynecology**

By

Samar Sayed EL-Sayed Abdel-Rahman

M.B.B.Ch (2012)

Resident of Obstetrics and Gynecology AL-Galaa Teaching Hospital

Supervised by

Prof. Dr. Tarek Fathy Tamara

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Prof. Dr. Amgad El-Saeid Abou-Gamrah

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Gihan El-Sayed El-Hawwary

Lecturer of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Tarek Fathy Tamara** Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Amgad El-Saeid Abou-Gamrah** Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Hawwary Lecturer of Obstetrics and Gynaecology, Faculty of Medicine- Ain Shams University for her honest cooperation, participating in suggesting and planning of the work, helpful suggestion, science guidance, fruitful critical discussion, and for reading and criticizing the thesis with great interest as well as good wishes.

Jast but not least, I dedicate this work to My family, specially My mother, whom without their sincere emotional support, pushing me forward this work would not have ever

Contents

Subjects	Page
List of abbreviations	
List of tables	IV
List of figures	VI
Introduction	1
Aim of the work	4
Review of Literature:	
• Chapter 1: Glucocorticoids and Hun	nan Parturition . 5
• Chapter 2: Post-Term Pregnancy	36
• Chapter 3: Induction of Labor	71
Patients & Methods	116
Results	125
Discussion	137
Summary	149
Conclusion & Recommendations	152
References	153
Arabic Summary	_

List of Abbreviations

11β-HSD : 11β-hydroxysteroid dehydrogenase

AC : Abdominal circumference

ACTH : Adrenocorticotropic hormone

ADD : Actual day of delivery

AFI : Amniotic fluid index

AP : Activating protein

BMI : Body mass index

BP : Blood pressure

BPM: Beats per minute

bpm : Beat per minute

BPP : Biophysical profile

CL : Cervical Length

COX2 : Cyclo-oxygenase-2

CRH : Corticotropin releasing hormone

CRH-R : CRH receptors

CRH-R1 : CRH receptor type 1CRH-R2 : CRH receptor type 2

CSF : Colony stimulating factor

CTG : Cardiotocography

CYP 17 : 17alpha-hydroxylase/17, 20-lyase

D : DexamethasoneDCs : Dendritic cells

DHEA
 EASI
 Extra-Amniotic Saline Infusion

EFW: Estimated fetal weight

FGR : Fetal growth restriction

🕏 List of Aberrations 🗷

FH : Fundal height measurement

GR : Glucocorticoid receptors

GRE : Glucocorticoid responsive elements

HFA : Human fetal adrenal

HPA : Hypothalamic-pituitary-adrenal

HSD3B2 : 3-hydroxysteroid dehydrogenase type II

IL-1b : Interleukin-1b

IL-8 : Interleukin-8

iNOS : Inducible nitric oxide synthase

IOL : Induction of labor

IUFD : Intrauterine Fetal Demise

IUGR : Intrauterine Growth Restriction

LMP : Last Menstrual Period

MAS : Meconium aspiration syndrome

MCSF : Macrophage stimulating factor

MMP : Metalloproteinase

mRNAs : Messenger RNAS

MSL : Meconium stained liquor

N.S. : Non-significant

NFκB : Nuclear factor κB

NICE: Institute for Health and Care Excellence

NKT : Natural killer T

NO : Nitric oxide

NST : Non-stress test

P : Placebo

PE: Pre-eclampsia

PGDH : Prostaglandin dehydrogenase

3 Tist of Aberrations

 $\mathbf{PGE_1}$: Prostaglandin $\mathbf{E_1}$

PGE₂: Prostaglandin E₂

PGs: Prostaglandins

PIH : Pregnancy-Induced Hypertension

PR : Progesterone receptor

PRs : Progesterone receptors

RCTs : Randomized controlled trials

ROM : Rupture of membranes

RU486 : Roussel Uclaf drug number 486

SGA : Small for gestational age

siRNA : Small interfering RNA

SP-A : Surfactant protein-A

TNF: Tumor necrosis factor

TVU: Trans-vaginal Ultrasound

US : Ultrasonographic

List of Tables

Table No.	Cabla Na 7541a	Page
Table No.	Title	
Table 1	Duration of action for Glucocorticoids	10
	analogues	
Table 2	Fetal and Neonatal Morbidity Attributed to	57
	Post term Pregnancy.	
Table 3	Confirmation of term gestation	74
Table 4	Labor stimulation with oxytocin: examples	97
	of low and high-dose oxytocin	
Table 5	Bishop scoring system	103
Table 6	Factors that may affect fetal oxygenation in	113
	labor	
Table 7	The randomization table	121
Table 8	Statistical comparison between the two	126
	studied groups as regard age, gestational	
	age and body mass index (BMI) on	
	admission date	
Table 9	Statistical comparison between the two	127
	studied groups as regard pulse and blood	
	pressure at time of intervention	
Table 10	Statistical comparison between the two	128
	studied groups as regard bishop score at	
	time of intervention	

🕏 List of Tables 🗷

Table No.	Title	Page
		No.
Table 11	Statistical comparison between the two	130
	studied groups as regard duration between	
	initiation of labor induction and beginning	
	of active phase of labor	
Table 12	Statistical comparison between the two	131
	studied groups as regard duration of active	
	phase of labor	
Table 13	Statistical comparison between the two	132
	studied groups as regard rate of cervical	
	dilatation	
Table 14	Statistical comparison between the two	133
	studied groups as regards duration of 2nd	
	stage of labor	
Table 15	Statistical comparison between the two	134
	studied groups as regards duration of 3rd	
	stage of labor	
Table 16	Statistical comparison between the two	135
	studied groups as regard mode of delivery	
	and CS indications.	
Table 17	Statistical comparison between the two	136
	studied groups as regard Apgar score	

List of Figures

Figure No.	Title	Page No.
Figure (1)	Hormone synthesis in the adrenal cortex	7
Figure (2)	Glucocorticoid analogues;	9
Figure (3)	The placental-fetal adrenal endocrine cascade.	14
Figure (4)	Schematic representation of hypothetical model describing,	17
Figure (5)	Maternal and fetal HPA axis and stress induced	20
Figure (6)	Maternal and Fetal Endocrinal System involved in increased placental production of CRH	23
Figure (7)	Mechanisms of functional progesterone withdrawal for the initiation of parturition	27
Figure (8)	Cortisol and prostaglandin production to promote fetal maturation and initiate parturition	31
Figure (9)	Maternal–Fetal Interactions	49
Figure (10)	Algorithm for management of low-risk pregnancy beyond 40 weeks' gestation	70
Figure (11)	Intra-cervical balloon catheter and EASI.	90
Figure (12)		
Figure (13)	ure (13) Structure of oxytocin	
Figure (14)	Tocodynamometer	111
Figure (15)	Fetal heart rate pattern	112
Figure (16)	Mean age, BMI and gestational age in	126
	dexamethasone group and control group.	
Figure (17)	Mean pulse, systolic BP and diastolic dexamethasone group and control group.	127
Figure (18)	Bar chart total bishop score.	
Figure (19)	Duration between initiation of labor	130

🕃 List of Figures 🗷

Figure No.	Title	Page No.
	induction and beginning of active phase	
	of labor between the two studied groups.	
Figure (20)	Mean duration of active phase of labor	131
	(hrs) in dexamethasone group and control	
	group.	
Figure (21)	Mean rate of cervical dilatation (cm/hr) in	132
	dexamethasone group and control group.	
Figure (22)	Mean duration of 2nd stage of labor	133
	(minutes) in dexamethasone group and	
	control group.	
Figure (23)	Mean duration of 3rd stage of labor	134
	(minutes) in dexamethasone group and	
	control group.	
Figure (24)	Statistical comparison between the two	135
_	studied groups as regard mode of delivery	
	and CS indications.	
Figure (25)	Statistical comparison between the two	136
	studied groups as regard Apgar score.	

Dexamethasone Effect on Induction-delivery Interval at Term Randomized Controlled Trial

Protocol of Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics and Gynecology**

By

Samar Sayed EL-Sayed Abdel-Rahman

M.B.B.Ch (2012)
Resident of Obstetrics and Gynecology
AL-Galaa Teaching Hospital

Supervised by

Prof. Dr. Tarek Fathy Tamara

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Prof. Dr. Amgad El-Saeid Abou-Gamrah

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Gihan El-Sayed El-Hawwary

Lecturer of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2016

Introduction

Induction of labor refers to the process of artificially initiating uterine contractions prior to their spontaneous onset to effects progressive effacement and dilatation of the cervix and ultimately, delivery of the baby (*Hayman*, 2010).

It is one of the most commonly performed obstetrical procedures in In the United States, the incidence of labor induction more than doubled from 9.5 percent in 1991 to 23.2 percent in 2011 (*Martin*, 2013).

Reasons for the increase in these inductions include the availability of better cervical ripening agents, patient and provider desire to arrange a convenient time of delivery, and more relaxed attitudes toward marginal indications for induction (*Rayburn et al.*, 2002).

Delivery before the onset of labor is indicated when the maternal/fetal risks associated with continuing the pregnancy are thought to be greater than the maternal/fetal risks associated with early delivery (*ACOG*,2009).

The success of induction and labor progression is dependent on the condition of the cervix before induction initiation (*Barclay*, 2009).

About 10 percent of pregnancies may be prolonged. In general, the longer the truly post-term fetus stays in the uterus, the greater the risk of a severely compromised fetus and newborn infant. Therefore of major importance in handling compromised postdate pregnancies is the use of a suitable method of labor induction (*Petraglia et al.*, 2010).

A prolonged gestation is more likely to occur when the fetus has congenital adrenal hyperplasia caused by 21hydroxylase deficiency, which may be due to an impaired cortisol production (*O'Sullivan et al.*, 2007).

Glucocorticoids are now known to play key roles in fetal maturation for example in maturation of the lung in anticipation of extra-uterine life and in several species appear to be mediators in the initiation of labor (*Falah et al.*, 2014).

The process of childbirth starts from the axis of the hypothalamus, the pituitary gland, and the adrenal glands. Steroid substances produced in the adrenal glands of the human fetus affect the placenta and the membranes and

transform the myometrium from the static to the contractile state (*Hoffman et al.*, 2012).

The placenta may play a role in this process because it produces a lot of Corticotropin releasing hormone (CRH). The adrenal glands of the fetus do not produce a considerable amount of cortisol until the third trimester. During the last weeks of pregnancy, the cortisol and Dehydroepiandrosterone sulfate (DHEA –S) contents of the fetus rise and this leads to an increase in maternal estrogens, a particularly sterol (*Hoffman et al.,2012*).

Placental CRH is not under the influence of negative feedback from cortisol. The concentration of CRH in the fetus rises during the last 12 weeks of pregnancy. This results in modification of the contractility of the uterus {1}, stimulation of the membranes produce to more prostaglandins{2}, stimulation to produce C19 steroids from placental adrenaline {3}, and increase in the estrogen content {4}. This will disturb the ratio of estrogen to progesterone and will cause expression of contractile proteins. In fact, the increase in CRH near the end of pregnancy confirms the presence of a placental-fetal clock (*Hoffman et al.*, 2012).