Ain Shams University Faculty of Science Chemistry Department

New nano probes for the assessment of some diuretics in different body fluids

A Thesis

Submitted for the Degree of Master of Science
As Partial Fulfillment for the Requirements of Master of Science
(Chemistry Department)

Presented By

Ahmed Sayed Abd El-Motaleb Mohamed Abozaid

B.Sc.in major chemistry, Faculty of science Ain Shams University 2007

Under Supervision of

Prof. Dr. Mohamed Said Attia

Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

Dr. Ahmed Osman Youssef

Associate Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

To
Chemistry Department
Faculty of Science
Ain Shams University
For the degree
M.SC. in chemistry
(2018)

APPROVAL SHEET FOR SUBMISSION

Title of M.Sc. Thesis

New nano probes for the Assessment of Some diuretics in different body fluids

By

Ahmed Sayed Abd El-Motaleb Abozaid

B.Sc.in major chemistry, Faculty of science Ain Shams University 2007

The thesis has been approved for submission by the supervisors:

Prof. Dr. Mohamed Said Attia

Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

Dr. Ahmed Osman Youssef

Associate Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

Head of Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr. Ibrahim Badr

Ain Shams University Faculty of Science Chemistry Department

Statement

This thesis is submitted in partial fulfillment of the M.Sc Degree, Faculty of Science, Ain Shams University.

In addition to the work carried out in this thesis the candidate, **Ahmed Sayed Abd El-Motaleb Mohamed Abozaid** has attended postgraduate studies in the following topics and passed successfully in the final examination in the academic year 2009-2010:

621	Coordination Chemistry
622	Radiochemistry and Separation Techniques
623	Electrochemistry and Electrochemical Analysis
624	Group Theory and Computer Programming
625	Spectroscopic Methods for Structural and
	Analytical Chemistry
	TOEFL

Prof. Dr. Ibrahim Badr

Chairman of Chemistry Department, Faculty of Science, Ain Shams University

APPROVAL SHEET FOR SUBMISSION New nano probes for the Assessment of Some diuretics in different body fluids

By

Ahmed Sayed Abd El-Motaleb Abozaid

B.Sc.in major chemistry, Faculty of science Ain Shams University 2007

The thesis has been approved for submission by the supervisors:

Prof. Dr. Mohamed Said Attia

Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

Dr. Ahmed Osman Youssef

Associate Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

The thesis for Master degree has been approved by:

Prof. Dr. Mohamed Said Attia

Professor of Analytical Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Mohamed Samir Mohi Elddin

Professor of Materias Science, City of Scentific Research and Technological Applications, New Burj Al Arab.

Dr. Mostafa Yasen Nassar

Associate Professor of Analytical Chemistry, Faculty of Science, Banha University.

Head of Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr. Ibrahim Badr

Highly sensitive Eu3+ doped in sol-gel matrix optical sensor for the assessment of Ciprofloxacin in different real samples

M. S. Attia, A. O. Youssef, A. M. Ismael, R. Gafer, A. Adel, A. Twfik, A. Wafeey, H. Gamal, A. Sayed

1Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

Abstract

The efficiency of excited-state interaction between Eu^{3+} doped in sol- gel matrix and the industrial product ciprofloxacin of (CFX) has been studied in different solvents and pHs. A high luminescence intensity peak at 617 nm of europium- ciprofloxacin complex at λ_{ex} =365 nm in acetonitrile was obtained. The photophysical properties of the red emissive Eu^{3+} complex doped in sol-gel matrix have been elucidated, the europium was used as optical sensor for the assessment of ciprofloxacin in the pharmaceutical tablets and serum samples at pH 8.0 and λ_{ex} = 365 nm with a concentration range of 5.0 $\times 10^{-9}$ - 1.0 $\times 10^{-6}$ mol L^{-1} for ciprofloxacin, correlation coefficient of 0.99 and detection limit of 1.65 $\times 10^{-9}$ mol L^{-1} .

Keywords: Ciprofloxacin; Europium (III); Enhancing; Luminescence; Optical sensor; Sol-Gel.

ACKNOWLEDGMENTS

First and foremost, Praise be to **Allaah**, the lord of the world & Creator of everything, by whose grace this work has been completed and helped me to finish it.

I would like to express my deep thanks and gratitude to **Prof. Or. Mohamed Said Attia,** Professor of Analytical and photochemistry, Faculty of Science, Ain Shams University, for suggesting the point of this research and management of this work, his guidance and supervision in the course of the work, and for his stimulating criticisms and help in the preparation of the thesis. Who taught me how can I be a student seeks research and knowledge, Was supportive and did not spare something.

My deep thanks also to **Dr. Ahmed Osman Youssef**, Associate Professor of Analytical Chemistry, Faculty of Science, Ain Shams University for his valuable help and support throughout the course of this work.

Also, I offer my thanks and appreciations to all of those who supported me in any respect in the Chemistry Department during the completion of this thesis.

Last but not Least, my thanks are due to my family, especially my mother, sisters and my wife for support and encouragement which gave me the strength to finish this work.

List Of Contents

Title		Page
List of cont	ents	i
List of figur	res	vi
List of table	es	ix
List of abbr	reviations	X
Aim of the	work	xiii
Chapter I	: Introduction	
1.	Optical probes and diuretics	1
1.1.	Lanthanide	1
1.2.	Lanthanide probes	2
1.2.	Ligands	2
1.4.	Luminescent lanthanide complexes	3
1.4.1.	Mechanism of luminescence	3
1.4.2.	Sensitizing process (antenna effect)	5
1.4.3	Solvent Effect	7
1.4.3.1.	Influence of the solvent on the intensity of absorption spectra	8
1.4.3.2.	Influence of the solvent on the intensity of luminescence spectra	9
1.5.	Enhancement and quenching fluorescence of optical probes	9
1.5.1	Enhancement fluorescence	9
1.5.2	Quenching fluorescence	9
1.5.3.	Types of quenching of luminescence	10
1.5.3.1.	Collisional (Dynamic) quenching	10
1.5.3.2.	Static quenching	10
1.5.4.	Theory of collisional quenching	10
1.5.5.	Theory of static quenching	11

i

List Of Contents

1.6.	Uses of luminescent lanthanide complexes in medical diagnostics	12
1.6.1.	Application of lanthanides as analytical probes	13
1.6.1.1.	Cerium complexes	13
1.6.1.2.	Erbium complexes	13
1.6.1.3.	Terbium complexes	14
1.7.	Determination of diuretics/steroids in biological fluids	14
1.8.	Diuretics	14
1.9.	Role of diuretics in improvement of symptoms and outcomes	14
1.10.	Classification of diuretics	15
1.10.1	Classification of diuretics may be based on	15
	different properties	
1.11.	High ceiling/loop diuretic	16
1.11.1.	Use of loop Diuretics to treat HF	16
1.12.	Thiazides	17
1.12.1	Use of thiazide diuretics to treat HF	18
1.13	Literature review	19
	II: A new optical sensor Tb ³⁺ -acetyl aceton for assesment of furosemide drug.	
2.1.	Introduction	33
2.2.	Experimental	35
2.2.1.	Apparatus	35
2.2.2.	Materials	35
2.2.3.	Reagents and solutions	35
2.2.4.	Proposed method	36

List Of Contents

2.2.5.	General procedure	36
2.2.5.1	Synthesis of Tb ³⁺ -ACAC complex	36
2.2.5.2	Calibration curve	37
2.2.6.	Determination of furosemide in pharmaceutical preparations	37
2.2.7.	Determination of furosemide in serum solution	37
2.3.	Results and discussions	37
2.3.1.	Absorption and emission spectra	37
2.3.2.	Effect of experimental variables	38
2.3.2.1.	Effect of solvent	38
2.3.2.2.	Effect of pH	39
2.3.2.3.	Emission spectra	40
2.4.	Analytical performance	40
2.4.1.	Analytical parameters of optical sensor method	40
2.4.2.	Selectivity	42
2.4.3.	Application to formulations	43
2.4.4.	Recovery study	43
2.4.5.	Accuracy and precision of the method	44
2.5.	Conclusion	46
	III : A new optical sensor by complexation of Tb ³⁺ lorothiazide for assessment of chlorothiazide drug	
3.1.	Introduction	47
3.2.	Experimental	48
3.2.1.	Apparatus	48
3.2.2.	Materials	49
3.2.3.	Reagents and solutions	49
3.2.4.	General procedure	49