

RISK MANAGEMENT OF PRODUCED WATER FROM OIL WELLS

By

Omar Sherif Tawfik Mubarak

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Risk Engineering

RISK MANAGEMENT OF PRODUCED WATER FROM OIL WELLS

By Omar Sherif Tawfik Mubarak

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Risk Engineering

Under the Supervision of

Prof. Dr. Hanan Hassan El Sersy Dr. Tarek Mohamed Abdel-hamid

Professor of Chemical Engineering
Faculty of Engineering, Cairo University

Managing Director, GREEN Environment Consultants

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

RISK MANAGEMENT OF PRODUCED WATER FROM OIL WELLS

By Omar Sherif Tawfik Mubarak

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In Risk Engineering

Approved by the Examining Committee		
Prof. Dr. Hanan Hassan El Sersy	Thesis Main Advisor	
Dr. Tarek Mohamed Abdel-Hamid (GREEN Environment Consultants)	Advisor	
Prof. Dr. Mai Mohamed Kamal	Internal Examiner	
Dr. Mohamed Essam Kandil (Industrial Engineering Consultants)	External Examine	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer's Name: Omar Sherif Tawfik Mubarak

Date of Birth: 18/08/1991 **Nationality:** Egyptian

E-mail: Omar.sherif.tawfik@gmail.com

Phone: 01004882419

Address: 6th of October, district 2, area 8

Registration Date:1/10/2013Awarding Date:.../.../2018Degree:Master of ScienceDepartment:Risk Engineering

Supervisors:

Prof. Hanan Hassan El Sersy Dr. Tarek Mohamed Abdelhamid

(GREEN Environment Consultants)

Examiners:

Dr. Mohamed Essam Kandil (External examiner)

(Industrial Engineering Consultants)

Prof. Mai Mohamed Kamal (Internal examiner)
Prof. Hanan Hassan El Sersy (Thesis main advisor)
Dr. Tarek Mohamed Abdel-hamid (Advisor)

Dr. Tarek Mohamed Abdel-hamid (GREEN Environment Consultants)

Title of Thesis:

Risk Management of Produced Water from Oil Wells

Key Words:

Risk; Management; Produced; Water; Oil,

Summary:

The present work investigates the best produced water management techniques to be used by oil and gas operators either minimization, re-using/recycling and disposal from technical and economical point of view and provides a scheme of work between the different techniques. A risk analysis study was carried to define and evaluate different risks that can lead to spillage and leakage of produced water to surrounding environment and personnel which are Management, technical and operation risks. This study also included risk assessment for produced water treatment plant effect on Air, land and water including consequences and suggested control actions.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Dedication

To all my family members, Mother, father, grandparents and brother for their support during preparing this study

Special Thanks to my Wife Menattallah Elserafy for her continuous support to me

Acknowledgments

Special Thanks to Dr. Hanan El Sersy for her effort, guidance and support through the thesis.

Special thanks to GREEN Environment Consultants, represented in Dr. Tarek Abdelhamid, Managing Director for the continuous support and effort throughout the thesis and providing me with important information and analysis sheets.

Special Thanks to Dr. Fouad Khalaf for his efforts with us in the past years in the Risk Engineering postgraduate program.

Table of Contents

DISCLAIMER	I
DEDICATION	II
ACKNOWLEDGMENTS	III
LIST OF TABLES	VII
LIST OF FIGURES	VIII
NOMENCLATURE	IX
ABSTRACT	IX
CHAPTER 1: INTRODUCTION	1
1.1 OVERVIEW 1.2 PROBLEM STATEMENT 1.3 RESEARCH AIM: 1.4 RESEARCH METHODOLOGY 1.5 ORGANIZATION OF THE THESIS	1 1 2
CHAPTER 2 : LITERATURE REVIEW	3
2.1 INTRODUCTION 2.1.1 TYPES OF PRODUCED WATER 2.2 HISTORY OF PRODUCED WATER 2.3 PRODUCED WATER MANAGEMENT 2.4 PRODUCED WATER PRODUCTION 2.5 PRODUCED WATER CHARACTERISTICS 2.6 PRODUCED WATER TREATMENT: 2.7 MANAGEMENT TECHNIQUES 2.7.1 PRODUCED WATER MINIMIZATION TECHNIQUES 2.7.2 RECYCLE/ RE-USE TECHNIQUES 2.7.3 DISPOSAL/ DISCHARGE OF PW 2.8.THE COST OF PRODUCED WATER MANAGEMENT 2.9 PRODUCED WATER IMPACTS	3
2.10.SUMMARY	34
CHAPTER 3: PRODUCED WATER ANALYSIS AND ASSESSMENT.	35
3.1. METHODOLOGY AND RESULTS	41 42
4.1 DICCUCCION	60

MEASURED	69
APPENDIX B: ANALYTICAL METHODS FOR PARAMETERS	
APPENDIX A: PRODUCED WATER MANAGEMENT COSTS	68
REFERENCES	63
4.3 CONCLUSIONS.	73
4.2 RECOMMENDATIONS	71

List of Tables

Table 2.1: PW Specifications from Oil and Gas Fields.	11
Table 2.2: Produced Water Injection Percentage.	14
Table 2.3: Typical Values of PW Characteristics from Oil Field	22
Table 2.4: The Most Common Heavy Metals of PW from Oil Field	23
Table 2.5: Oil and grease removal technologies based on size of removable particles	26
Table 2.6: Summary of produced water treatment techniques that achieve the objectives	27
Table 2.7. Disinfection PW Treatment Techniques	28
Table 2.8: Desalination Produced Water Treatment Techniques.	29
Table 2.9: Miscellaneous Produced Water Treatment Techniques	29
Table 2.10: Technologies/Techniques for PW minimization.	32
Table 2.11: Water Re-use and Recycle management options	33
Table 2.12: Produced Water Disposal Techniques.	34
Table 2.13: Limits of Pollution in industrial Wastewater According to Egyptian laws	36
Table 2.14: Showing Environmental Effect of Components in PW Discharges	37
Table 2.15: Hazardous Chemical Effects on Health.	39
Table 2.16: Limits of PW discharge.	40
Table 3.1: First Sample Analysis Results.	41
Table 3.2: Second Sample Analysis Results.	44
Table 3.3: Third Sample Analysis Results.	46
Table 3.4: Risk assessment Processes and Techniques.	49
Table 3.5: Severity Risk Matrix	51
Table 3.6: Likelihood Risk Matrix.	53
Table 3.7: Risk Matrix Indicators.	54
Table 3.8: Management Risks.	55
Table 3.9: Technical Risks.	55
Table 3.10: Operational Risks.	56
Table 3.11: Type of Risks	56
Table 3.12: Risk assessment of PW treatment plant 1.	57
Table 3.13: Risk assessment of PW treatment plant 2.	58
Table 3.14: Risk assessment of PW treatment plant 3	61
Table 4.1: Produced Water Volume Information.	62
Table 4.2. Produced Water Management Information	63
Table 4.3: Treatment Techniques Recommended for Produced Water in Egypt	66
Table 4.4: Comparing Amount of PW Discharge To Sea With Amount of Reinjection	67

List of Figures

Figure 2.1: Typical Reservoir	12
Figure 2.2: World Produced Water Production	16
Figure 2.3: Yearly Discharge of Produced Water	16
Figure 2.4: Oil and Gas Generation	17
Figure 2.5: Breakdown of Produced Water Chemical Constituents	30
Figure 3.1: Sampling of Pw from Oil Field Site	43
Figure 3.2: Sampling of Pw from Oil Field Site.	43
Figure 3.3: Pw Impact To Environment	50
Figure 3.4: Research Methodology	52
Figure 3.5: Management Risks Analysis	58
Figure 3.6: Management Risks Analysis 2.	58
Figure 3.7: Technical Risks Analysis	59
Figure 3.8: Operational Risks Analysis 1	59
Figure 3.9: Operational Risks Analysis 2.	60
Figure 4.1: Scheme Of Produced Water Management Techniques	65

Nomenclature

Abbreviation	Description
PW	Produced Water
PAHs	Polycyclic Aromatic Hydrocarbons
FW	Formation Water
BTEX	Benzene, Toluene, Ethylbenzene And Xylene
TDS	Total Dissolved Solids
Ca	Calcium
Mg	Magnesium
Co ₂	Carbon Dioxide
H ₂ s	Hydrogen Sulfide
NORM	Naturally Occurring Radioactive Materials
UV	Ultra Violet
ppm	Part Per Million
BOD	Biological Oxygen Demand
COD	Chemical Oxygen Demand
TSS	Total Suspended Solids
NH ₃	Ammonia
NO ₃	Nitrate
CN	Cyanide
Ba	Barium
Al	Aluminum
OSHA	Occupational Safety And Health Administration
EPA	Environmental Protection Agency
EEAA	Egyptian Environmental Affairs Agency
IGF	Induced Gas Flotation
DGF	Dissolved Gas Flotation

Abstract

Produced water is water produced alongside petroleum product, either from oil or gas fields. It can be found beneath underground formations. Oil and Gas production is either done onshore or offshore, and both result in different products and byproducts. PW is considered the major byproduct and derivative from the petroleum industry. According to its characteristics, PW can be either considered to have a worthwhile outcome or just considered a discarded product.

This thesis investigates the best and most feasible produced water management techniques as it is done through various practices and technologies with different approaches and ideas and it differs from field to field. These approaches can be summarized under three main general categories of management practices: 1) PW Disposal and Discharge 2) Minimization 3) Re-use/Recycle. A case study was carried on a selected oil field in western desert in Egypt by taking different samples of produced water from different points in the field and carrying out full analysis to determine physical and chemical constituents then providing appropriate management technique according the results of each sample. Produced water management techniques have advantages and disadvantages and differ from site to site. The thesis aims to define, summarize and analyze various PW management techniques employed all over the world and their possible applications in the Egyptian oil fields.

Risk assessments study for PW treatment facility impacts was carried in case of leakage and disposal and analysis of different actions that can lead to leakage and spillage either management, technical and operation risks. Also a full risk assessment of produced water treatment facility was conducted to study the possible effects on the surrounding environment (Land, air and water) and their consequences and action plans.

Chapter 1: Introduction

1.1. Overview:

Despite the numerous sources and supplies of water, the poor management of water infrastructure, increase in human population, change of climate, and lack of economic and physical aids to protect the precious resources will result in a scarcity problem. The rarity of fresh water worldwide is also coupled with lack of accessibility to this water, which makes 1.2 billion people suffer from this problem[1]. To minimize the difficult problem, some methodologies should be implemented to fulfill the demand for safe water and develop a less polluted environment. Surface, ground, sea and rain water are all considered sources of water, which can be utilized in many different areas including domestic, agricultural, and industrial uses. PW is also another component considered one of the main waste streams produced in the oil and gas industries. The discharge of these wastes back to oceans and lakes without meeting the minimum treatment requirements will continue to increase water pollution and cause environmental problems [2]. Oil contamination can be hazardous to humankind and marine life as they are subjected to polluted water and soil[3]. Adverse effects have been reported on people's contamination with oil and organic compounds. It is therefore necessary to treat discharged streams from the oil and gas companies in order to protect the local environment as well as living creatures[4].

1.2. Problem Statement:

Oil and Gas operations are very complex and quite unique as they need specialized and experienced personnel and companies who should possess very high technological and technical capabilities. The personnel should also have the awareness, understanding and the ability to assess all kinds of risks, which they be faced during and after production. For example, PW can cause a lot of risks to the environment if not managed properly. In this thesis, The PW risks, their assessment and provide analysis are discussed for selected oil fields in Egypt.

1.3. Research Aim:

- Identify and analyze associated risks from PW leakage and spills from Oil and gas production in Egypt.
- Identify best PW treatment techniques
- Identify best PW minimization techniques
- Identify best PW re-using options
- Identify best PW disposal techniques
- Help oil and gas operators to decide upon the best and most feasible management technique for PW

1.4. Research Methodology

The study was conducted in the following sequence:

- A detailed literature review was carried out to cover the most important information about PW
- Data was collected from oil fields
- Complete analysis was performed for the collected samples
- Performing risk assessment for PW
- Proposing PW proper and feasible management techniques
- Concluding the findings and providing recommendations

1.5. Organization of the thesis

First Chapter includes an introduction about PW. Chapter 2 provides a summary about all PW management techniques with its advantages and disadvantages. Chapter 3 includes the analysis results of PW effluents from selected oil fields site and risk assessment. Chapter 4 includes the discussion and the conclusion.