

Preparation of Graphene and its derivatives for applications in Solar Cells

A Thesis in Chemistry
Submitted for the Degree of Doctor of Philosophy of Science in Chemistry

Submitted by Ghada Emam Ahmed Khedr M. Sc., Chemistry, 2012

Supervised by

Prof. Sayed Sabet Abdel Rehem.
Physical Chemistry, DSc. Ph.D.
Faculty of Science - Ain Shams University

Prof. Ahmad Mohammad Al-Sabagh applied chemistry, DSc. Ph.D. Egyptian Petroleum Research Institute.

Prof. Dr. Mohamed Hassan Talaat
Physics- Faculty of Science
Ain Shams University

Asso. Prof. Rania Elsaid Morsi Chemistry, Egyptian Petroleum Research Institute

Asso. Prof. Tamer Abd Allah fathy
Physics- Faculty of Science - Ain Shams University

2018

Ain Shams University Faculty of Science Chemistry Department

Preparation of Graphene and its derivatives for applications in Solar Cells A Thesis in Chemistry

Submitted for the Degree of Doctor of Philosophy of Science in Chemistry

Submitted by

Ghada Emam Ahmed Khedr

M. Sc., Chemistry, 2012

Supervised by

Prof. Sayed Sabet Abdel Rehem.
Physical Chemistry, DSc. Ph.D.
Faculty of Science - Ain Shams University

Prof. Ahmad Mohammad Al-Sabagh applied chemistry, DSc. Ph.D. Egyptian Petroleum Research Institute.

Prof. Dr. Mohamed Hassan Talaat Physics- Faculty of Science Ain Shams University Asso. Prof. Rania Elsaid Morsi Chemistry, Egyptian Petroleum Research Institute

Asso. Prof. Tamer Abd Allah fathy
Physics- Faculty of Science - Ain Shams University

2018

Preparation of Graphene and its derivatives for applications in Solar Cells

By

Ghada Emam Ahmed Khedr

M.Sc. in Chemistry, 2012

Faculty of Science – Menofia University

A Thesis Submitted to Faculty of Science
for
The Degree of Doctor Philosophy
In Chemistry

Chemistry Department
Faculty of Science
Ain Shams University

2018

APPROVAL SHEET

Name of candidate: Ghada Emam Ahmed Khedr

Degree: Ph.D. Degree in Chemistry

Thesis Title: Preparation of Graphene and its derivatives for applications in Solar

Cells

This Thesis has been approved by:

1.Prof. Sayed Sabet Abdel Rehem, DSc. Ph. D.

Physical Chemistry - Faculty of Science - Ain Shams University

2. Prof. Dr. Mohamed Hassan TalaatPhysics- Faculty of Science - Ain Shams University

3. Prof. Ahmad Mohammad Al-Sabagh, DSc. Ph. D.

Applied chemistry - Egyptian Petroleum Research Institute.

4. Asso. Prof. Rania Elsaid Morsi

chemistry- Egyptian Petroleum Research Institute.

5. Asso. Prof. Tamer Abd Allah

Physics- Faculty of Science - Ain Shams University

Approval

Prof. Dr. Ibrahim H. A. Badr

Chairman of Chemistry Department

Acknowledgement

It would not have been possible to write this doctoral thesis without the help and support of the kind people around me to only some of them it is possible to give particular mention here.

I would like to express the deepest appreciation to my supervisors in Ain Shams University, Prof. Dr. Hassan talaat, Prof. Dr. Sayed Sabet and Dr. Tamer Abd Allah for their guidance and advice during finishing the research and writing publications, also for their patience to correct my thesis. I would also like to express my sincere gratitude to my supervisors in Egyptian petroleum research institute; Prof. Dr. Ahmad Alsabagh, Prof. Dr. Yasser Mustafa for suggesting the problem. I am also indebted with gratitude to Dr. Rania Elsaid for her support, careful reading, guidance and constructive comments that helped me complete this research. She helped me in all the time of research and writing of this thesis. There are no words to express my grateful to my mother, my lovely husband and my children: Habiba, Alhabib and Alzahraa. I would like to acknowledge the financial support from EPRI. In addition, of course I would like to thank all my friends in EPRI.

The last, all thanks to my father may God's mercy and blessings are upon him. My dream was to prolong his life and achieve his dream and attend my PhD discussion.

Abstract

Dye-sensitized solar cell (DSSC) is built with combining many components in order to convert the solar energy to electricity. One of the DSSC components is a metal oxide semiconductor which plays the role of electron transport layer (ETL). It receives electrons from photoexcited dyes attached on its surface and ensures the electron transfer to the back contact of the solar cell. Developing the metal oxide that fulfills the requirements as an ETL is one of the effort to increase the DSSC power conversion efficiency. The layer thickness was optimized to be three layers. The electrode made of 1 wt. % graphene (GR) and TiO₂ gives the highest photovoltaic efficiency 0.54 %. The electrode made of 1 wt. % $GR-TiO_2$ -5 wt. % ZrO_2 NF gives the highest photovoltaic efficiency 0. 19 %. The electrode made of 1 wt. % GR-TiO₂ -7 wt. % SnO₂ NF gives the highest photovoltaic efficiency 0.13 %. Titania nanofibers are more effective for increasing the power conversion efficiency than zirconia nanofibers and tin oxide nanofibers. TiO₂ NF > ZrO₂ NF > SnO₂ NF. The use of N3 dye instead of the expensive N719 as well as the carbon counter electrode instead of Pt will lower the cost of fabrication of the DSSCs. The formation of first confirmed using transmission electron graphene sheets was microscopy (TEM) and X-ray diffraction (XRD). All photoelectrodes The prepared coating technique. morphology are by spin using scanning photoelectrodes has been characterized electron microscopy (SEM). The cell performances were obtained by measuring the I-V curves of the cells under calibrated illumination.

Keywords: Dye-sensitized solar cell, electron transport layer, photoelectrode, TiO₂, graphene, nanofibers.

Aim of the work

current research The of the is to advance performance and lower the cost of manufacturing dye sensitized solar cells through the replacement of the different solar cell components: mainly the active layer by incorporation of graphene and different ratios of different metal oxides nanofibers. Based on the background in Chapter 1, one can see that graphene, a two dimensional carbon sheet, has attracted great interests due to its unique properties. To explore its practical applications, large-scale methods with controllable integration synthesis of individual graphene advanced multi-functional sheets to structures essential. Chemical oxidation and reduction of graphite is considered to be a very promising approach due to its low cost, easy preparation and high yield. It has been applied to prepare solutions, graphene-based composite materials. graphene oxide Chemical oxidation and reduction of graphite method includes three steps: oxidation of graphite, exfoliation of graphite oxide graphene oxide, and reduction of graphene oxide. The oxidation of graphite produces hydrophilic graphite oxide, which can be easily exfoliated into graphene oxide in solvents, and further reduced to graphene by chemical, thermal reduction approaches.

Contents

Acknowledgement	i
Abstract	ii
Aim of the work	iii
Contents	iv
List of Figures	vi
List of Tables	viii
List of the Important Abbreviations and Symbols	ix
I. Introduction & Literature Review	1
I.1. Background	1
I.1.1. Solar Energy as an Alternative Renewable Energy	1
I.1.2. Dye-sensitized solar cells	5
I.2. Fundamental of DSSC	7
I.2.1. DSSC Component	7
I.2.1.1. Dye Sensitizer	7
I.2.1.2. Transparent and Conductive Oxides (TCO)	12
I.2.1.3 Semiconductor	14
I.2.1.3.1. TiO ₂	16
I.2.1.4. Counter Electrode	17
I.2.1.5. Electrolyte	18
I.2.2. Electron Transport in DSSC	20
I.2.3. Basic Principle in Cell Characterization	21
I.3. Advantages and Disadvantages of DSSCs	23
I.3.1. Advantages of DSSCs	23
I.3.2. Disadvantages of DSSCs	24
I.4. Graphene Materials	26
I.4.1 Application of Graphene in DSSCs	33
I.4.1.1. Photoanode	33
I.4.1.1.1 Transparent Electrode	33
I.4.1.1.2. Semiconducting Layer	35
I.4.1.1.3. Sensitizer	43
I.4.1.2. Electrolyte	45
I.4.1.3. Counter Electrode	47
I.5. Electrospinning	48
II. Experimental	52
II.1.Materials	52
II.2.Preparation of GR	52
II.3.Preparation of TiO ₂ Nanofibers	57
II.4. Preparation of ZrO ₂ Nanofibers	59
II.5. Preparation of SnO ₂ Nanofibers	59

Contents

II.6. Preparation of the TiO ₂ -GR Paste (Small Ratios)	
II.7. Preparation of the TiO ₂ -GR Paste (High Ratios)	
II.8. Electrolyte Preparation	
II.9. Substrate Cleaning	61
II.10. Dye Staining	61
II.11. DSSC Fabrication Procedure	62
II.12 Physical and Optical Characterization	
II.12.1 X-ray Diffraction (XRD)	
II.12.2 Field Emission Electron Microscopy (FESEM)	
II.12.3 Transmission Electron Microscope (TEM)	
II.12.4 UV-vis Absorption Spectroscopy (UV-vis)	
II.13 Electrical Characterization	
II.13.1 Photovoltaic Measurements	
III. Results and Discussion	
III.1 Incorporation of Graphene (GR) in Small Composition	69
Ratios in DSSCs	
III.2 Incorporation of Graphene (GR) in High Composition Ratios	81
in DSSCs	
III.3 Incorporation of electrospun TiO ₂ Nanofibers (TiO ₂)	88
NF) with Different Ratios in DSSCs	
III.4 Incorporation of Electrospun ZrO ₂ Nanofibers (ZrO ₂)	103
NF) with Different Ratios in DSSCs	
III.5 Incorporation of Electrospun SnO ₂ Nanofibers (SnO ₂)	110
NF) with Different Ratios in DSSCs	
Summary	121
References	123
Arabic Summary	<u></u>

List of Figures

Fig. 1.1: Consumption of the Fossil Fuel in the World from 1965 to	2
2030, as an Expectation	
Fig. 1.2: Average Annual Global Solar Radiation	3
Fig. 1.3: Some Applications of Solar Cells	4
Fig. 1.4: Total Installed PVs Capacity in the World	6
Fig. 1.5: Two DSSC Panels Installations in Switzerland	6
Fig. 1.6: Schematic Diagram of DSSC Using I ₃ ⁻ /I Redox-	8
Couple	
Fig. 1.7: Energy Diagram for a DSSC	21
Fig. 2.1 Schematic Diagram for Preparation of Graphene	55
Oxide	
Fig. 2.2 Schematic Diagram for Preparation of Graphene	56
Fig. 2.3: Schematic Diagram of Electrospinning on FTO	58
Fig. 2.4 Image for the Used Spin Coater	63
Fig. 2.5 Schematic Diagram for DSSC Fabrication	64
Fig. 3.1 XRD Pattern of Graphite	70
Fig. 3.2 XRD Pattern of Graphene Oxide	71
Fig. 3.3 XRD Pattern of Graphene	72
Fig. 3.4 TEM Images of TiO ₂ Nanoparticles	73
Fig. 3.5 TEM Images of Graphene Sheets	74
Fig. 3.6 SEM Images of TiO ₂ Nanoparticles	75
Fig. 3.7 SEM Images of 1 wt. % GR-TiO ₂ Composite	76
Fig. 3.8 UV-Vis Absorption Spectrum of N3 Dye	77
Fig. 3.9 The photovoltaic (J–V) Curves of DSSCs with Working	81
Electrode with Different Ratios of Graphene to Titania	
Fig. 3.10 XRD Patterns: 30 wt. % GR/TiO ₂ Composite	82
Fig. 3.11 Raman Spectrum for 30 wt. % GR/TiO ₂ Composite	83
Fig. 3.12 SEM Image of 30 wt. % GR-TiO ₂ Composite	85
Fig. 3.13 the photovoltaic (J–V) Curves of DSSCs with Working	87
Electrode with Different Ratios of Graphene to Titania	
Fig. 3.14 XRD Patterns of TiO ₂ Nanofibers after Calcination	91
Fig. 3.15 SEM Image of Electrospun TiO ₂ /PVP	93
Fig. 3.16 SEM Image of TiO ₂ NFs Thermally Treated	94
Fig. 3.17 TEM Images of Electrospun TiO ₂ /PVP	96
Fig. 3.18 TEM Images of TiO ₂ Nanofibers Thermally Treated	97
Fig. 3.19 The electron Diffraction Pattern of TiO ₂ NFs Thermally	98
Treated	
Fig. 3.20 Mapping and EDX Analysis of TiO ₂ /PVP Nanofibers	99

List of Figures

Fig. 3.21 Mapping and EDX Analysis of TiO ₂ Nanofibers	100
Thermally Treated	
Fig. 3.22 The photovoltaic (J–V) Curves of DSSCs with Working	103
Electrode with Different Ratios of Titania Nanofibers	
Fig. 3.23 XRD Patterns of ZrO ₂ Nanofibers after Calcination	104
Fig. 3.24 SEM of (a) ZrO ₂ /PVP Nanofibers and (b) ZrO ₂	105
Nanofibers Thermally Treated	
Fig. 3.25 TEM Images of ZrO ₂ Nanofibers Thermally Treated	106
Fig. 3.26 EDX of ZrO ₂ Nanofibers	107
Fig. 3.27 The electron Diffraction Pattern of ZrO ₂ Nanofibers	107
Fig. 3.28 Photovoltaic (J–V) Curves of DSSCs with Working	110
Electrode with Different Ratios of Zirconia Nanofibers	
Fig. 3.29 XRD Patterns of SnO ₂	111
Fig. 3.30 TEM Image of Electrospun SnO ₂ /PVP	112
Fig. 3.31 The electron Diffraction Pattern of SnO ₂ NFs Thermally	113
Treated	
Fig. 3.32 SEM of (a) SnO ₂ /PVP Nanofibers and (b) SnO ₂ NF	114
Thermally Treated	
Fig. 3.33 Mapping and EDX of SnO ₂ /PVP Nanofibers	115
Fig. 3.34 TEM of SnO ₂ Nanofibers after Calcination	117
Fig. 3.35 EDX of SnO ₂ Nanofibers after Calcination	118
Fig. 3.36 Photovoltaic (J–V) Curves of DSSCs with Working	120
Electrode with Different Ratios of Tin Oxide Nanofibers	

List of Tables

Table 3.1 Performance Parameters of the DSSCs with Different	78
Layers of TiO ₂	
Table 3.2 Performance Parameters of the DSSCs with Different GR	80
Ratios	
Table 3.3 Performance Parameters of the DSSCs with Different GR	88
Ratios	
Table 3.4 Performance parameters of the DSSCs with Different	102
Titania Nanofibers Ratios	
Table 3.5 Performance Parameters of the DSSCs with Different	109
Zirconia Nanofibers Ratios	
Table 3.6 Performance Parameters of the DSSCs with Different	119
SnO ₂ Nanofibers Ratios	

List of the Important Abbreviations and Symbols

AM	Air Mass
CDA	Chenodeoxycholic Acid
CVD	Chemical Vapor Deposition
DSSC	Dye-sensitized Solar Cell
EDX	Energy Dispersive X-ray
$\overline{E_F}$	Fermi Level
ETL	Electron Transport Layer
FF	Fill Factor
FTO	Flourine doped Tin Oxide
GO	Graphene Oxide
GQDs	Graphene Quantum Dots
GR	Graphene
GuT	Guanidinium Thiocyanate
HOMO	Highest Occupied Molecular Orbital
IPCE	Incident Photon-to-electron Conversion Efficiency
IR	Infrared Rays
ITO	Indium Tin Oxide
ITO/PEN	Indium Tin Oxide coated Polyethylene Naphthalate sheets
ITO/PET	Indium Tin Oxide Coated Polyethylene Terephthalate sheets
J_{sc}	Short Circuit Current density
LLCT	Ligand to Ligand Charge Transfer
LUMO	Lowest Unoccupied Molecular Orbital
MLLCT	Metal and Ligand to Ligand Charge Transfer
N3	cis-bis (isothiocyanato) bis (2-2-bipyridyl-4,4-dicarboxylato)
	ruthenium (II)
PCE	Power Conversion Efficiency
PEDOT	Poly(3,4-Ethylenedioxythiophene)
SAED	Selected Area Electron Diffraction
SEM	Scanning Electron Microscope
TBP	4-Tert-Butylpyridine
TCO	Transparent Conductive Oxide
TEM	Transmission Electron Microscope
XRD	X-Ray Diffraction
VB	Valence Band
V_{oc}	Open Circuit Voltage
η	Cell Efficiency

I. Introduction & Literature Review

I.1. Background

I.1.1. Solar Energy as an Alternative Renewable Energy

Energy is one of the primary needs of human life. Nowadays, the consumption of energy is increasing not only because the population increase, but also because many activities are going to be more and more energy dependent. Modern high technology era needs energy for various purposes including communication and transportation.

The fossil fuels, including coal, liquid fuels (oil/petroleum) and natural gas, are the major energy sources in the world that supplies 80% of the world energy demands (Asif & Muneer, 2007). Fig 1.1 displays the consumption of the fossil fuels from 1965 until 2030. This fig. shows that the demand increases with time. As non-renewable energy source, the fossil fuels have disadvantages of a limited availability. In their article, Shafiee and Topal have calculated that the oil, coal and gas stocks are only sufficient for about 40, 200 and 70 years, respectively if assumed that the world-consumption rate is constant as 2006's rate (Shafiee & Topal, 2009).

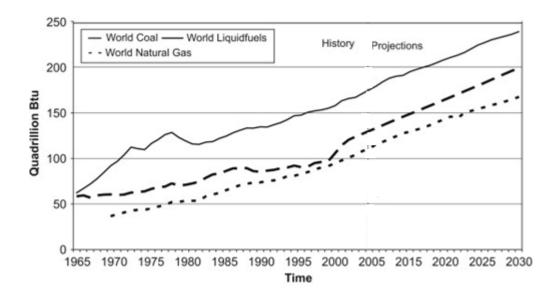


Fig. 1.1: Consumption of the fossil fuel in the world from 1965 to 2030, as an expectation (Shafiee and Topal, 2009)

Another disadvantage of the fossil fuels is their negative effect on the environment. Their combustion releases the greenhouse CO₂ gas in the atmosphere that provokes climate change and global warming (Steinberg, 1999).

The issue of the fossil fuels limited availability and the global warming effect has become a global problem and has been This discussed for vears. situation has encouraged researchers to exploit the renewable energy sources. There are many kinds of renewable energy that have potency to be used, wind, solar, geothermal, hydrogen, hydroelectric or biomass energies(Jacobson & Delucchi, 2011a; Salameh, 2003). One of the potential sources of renewable energy is the solar energy. It meets three criteria as energy source which (Kumar, sustainability, cleanness and low-risk Shrivastava, Untawale, 2015; Surendra S. Yadav, 2015). These three criteria are important to maintain the energy system for a long term (Jacobson & Delucchi, 2011b). The availability of the solar