

Normal values of motor nerve conduction velocity in infants and children

Thesis

Submitted in partial Fulfillment of degree of Master of Pediatrics

By

Dalia Mohamed Ahmed El-Sokary

MBCH – Faculty of Medicine MSc-Faculty of Medicine, Al-Azhar University

Supervisors

Prof. Dr. Atef El Sayed Donia

Professor of Pediatrics Faculty of Medicine Al-Azhar University

Prof. Dr. Shora Yousef Darwish

Professor of Neurology Faculty of Medicine Al-Azhar University

Prof. Dr. Hassan Ali Hassan

Professor of Pediatrics Faculty of Medicine Al-Azhar University

Dr. Mahmoud Abd El Moety Monzer

Assistant Professor of Neurology Faculty of Medicine Al – Azhar University

Dr. Mohamed Amin Gebril

Lecturer of Pediatrics Faculty of Medicine Al – Azhar University

Faculty of Medicine Al-Azhar University 2013 To the soul of my father,
to my mother who gives me
everything,
to my family who is behind all
my achievements and
to all my friends who help me.

Praise to Allah, the most gracious and the most merciful who guides us to the right way

I would like to express my deep gratitude to **Prof**. **Dr**. **Atef El Sayed Donia** Professor and Head of Pediatrics Department, Faculty of Medicine, Al-Azhar University for his wise instructions, meticulous supervision, valuable experience and continous insistence on perfection to accomplish this work in the best possible image.

I would like to express my deep gratitude to **Prof. Dr**. Shora Yousef **Darwish** Professor of neurology Faculty of Medicine Al-Azhar University for his help, greatest support, honest supervision, continuous guidance and his immeasurable efforts, which made the completion of this work possible.

It is agreat honor to express my deep gratitude and cordial appreciation to **Prof**. **Dr** Hassan Ali Hassan Professor of pediatrics, Faculty of Medicine, Al-Azhar University, who gave me much of his effort and close supervision throughout the work he provide me continuous encouragement and support his generous assistance and meticulous guidance had a pivotal role in the completion of this study. For providing me the experience, cooperation, continuous encouragement.

I would like to express my deep gratitude to **Dr**. **Mahmoud Abd El Moety Monzer** Assistant professor of neurology Faculty of Medicine Al –
Azhar University for his laborious effort, indispensable help, to provide continuous guidance and support, without his help this thesis could not have achieved its present form.

I would like to express my deep gratitude to **Dr**. **Mohamed Amin Gebril** Lecturer of Pediatrics Faculty of Medicine Al – Azhar University for his patience and willingness to provide continuous guidance and help in this thesis.

I would like to extend my gratitude to all infant and children and their parents and all stuff members and colleagues in Pediatric and Neurology department, Al-Azher University for their help whish they have offered to me

Last but not least, I owe special thanks and gratitude to all my family for their continuous guidance and constant encouragement

My great appreciation is extended to all those who shared either practically or morally in the accomplishment of this work.

Contents

Items	Page
	no
List of abbreviations	I
List of tables	II
List of figures	III
Introduction	1
Aim of the work	3
Review of the literature	4
Patients and Methods	36
Results	47
Discussion	62
Conclusion	67
Recommendation	68
Summary	69
References	72
Arabic summary	

List of Tables

	Page
Table (1): Typical nerve conduction study abnormalities seen with axon	35
loss or demyelination	
Table (2): Characteristics of the Study Groups	47
Table (3): Comparison between the different studied groups according to sex	48
Table (4): Motor nerve conduction study of ulnar nerve in the studied	49
groups	
Table (5): Motor nerve conduction study of the peroneal nerve in the	52
studied groups	
Table (6): Motor nerve conduction study of the ulnar nerve in different	55
age categories in group II	
Table (7): Motor nerve conduction study of the peroneal nerve in different	58
age categories in group II	

List of Figures

	Page
Figure (1):Development of nervous system	5
Figure(2): Anatomy of nervous system	7
Figure (3): Horizontal bisection of the head of an adult man, showing skin, skull, and brain with grey matter (brown in this image) and underlying white matter	8
Figure (4) :Motor Nerve or Motor Neuron	9
Figure(5): Origen of ulnar nerve	13
Figure(6): Branches and innervation of ulna nerve	15
Figure (7): Branches and innervation of peroneal nerve	16
Figure(8): Shows distribuation of NA+ and K+ through membrane initiating action potential.	19
Figure (9): Median nerve MCS in a case of Martin-Gruber anastomosis. Note the higher amplitude and the initial positive going phase at stimulation at elbow.	31
Figure(10): Schematic summary of the relationship between CV and amplitude parameters in axonal (low amplitude) and demyelinating (low CV) neuropathy.	35
Figure(11): Dantec keypoint apparatus.	38
Figure(12): Nihon kohden00057 apparatus	38
Figure (13): Shows stimulator	39
Figure (14): Shows Active & reference electrodes for motor nerve study	39
Figure (15): Shows ground electrode of dantec key point apparatus	40
Figure (16):shows ground electrode of Nihon kohden 00057 apparatus	40
Figure (17): diagram showing electrode placement for Motor nerve conduction study of the ulnar nerve	41
Figure (18): diagram showing electrode placement for Motor nerve conduction study of the peroneal nerve	42
Figure (19): Comparison between the different studied groups according to	48

sex	
Figure (20): Comparison between the different studied groups according to lat of ulnar nerve	50
Figure (21): Comparison between the different studied groups according to Amp of ulnar nerve	50
Figure (22): Comparison between the different studied groups according to CV of ulnar nerve	51
Figure (23): Comparison between the different studied groups according to lat of peroneal nerve	53
Figure (24): Comparison between the different studied groups according to Amp of peroneal nerve	53
Figure (25): Comparison between the different studied groups according to CV of peroneal nerve	54
Figure (26): Relation between age categories and lat of ulnar nerve	56
Figure (27): Relation between age categories and Amp of ulnar nerve	57
Figure (28): Relation between age categories CV of ulnar nerve	57
Figure (29): Relation between age categories and lat of peroneal nerve	60
Figure (30): Relation between age categories and Amp of peroneal nerve	60
Figure (31): Relation between age categories and CV of peroneal nerve	61

list of abbreviations

ADM : Abductor Digiti Minimi **EDB** Extensor Digitorum Brevis

AMP : Amplitude

CNS : Central nervous system

CMAP : Compound motor action potential

CV : Conduction velocity GMC : Ganglion mother cell

LAT : Latency

MG : Martin- gurber anastomosis

MAP : Motor action potential NAP Nerve action potential

MCV : Motor conduction velocity

MV : Mill volt MS Millisecond

M/S : Meter/second

N : Nerve

NCS : Nerve conduction study NCV : Nerve conduction velocity

NS : Nervous system

PNE : Peripheral nervous examination

PNS : Peripheral nervous system

SNAP : Sensory nerve action potential

TMS : Transcutanous magnetic stimulation

INTRODUCTION

Electrodiagnostic studies are a useful method for testing peripheral nerve function. They are comprised of a nerve conduction study, that measures the actual speed of conduction of the nerves and electromyography, which directly assesses the nerve supply to the muscle and the integrity of the muscle (Slutesky, 2006).

Nerve conduction studies are the most objective measures used in electrodiagnosis. The accessibility of many peripheral nerves make nerve conduction useful for survey approache to peripheral nerve involvement in generalized diseases, for defining the nature of injury, and for prognosis in focal injuries of peripheral nerve (Young, 2008).

These studies assess the ability of peripheral nerve to conduct an electrical impulses. A representative waveform is generated by nerve stimulation and its parameters are evaluated to monitor neuronal function (Cuccurullo, 2009).

NCV is related to the diameter of the nerve and the degree of myelination (presence of myelin sheath on the axon) of the nerve (Grigg,2007).

Nerve conduction study help in differentiation between two major groups of peripheral nerve disease demylination and axonal degeneration it helps to delineat the extent and the distribuation of neural lesion (Awang, et al, 2006).

- **❖** NCS give data on peripheral nervous system (PNS) function which may be used to provide
- 1- Diagnosis
- 2- Description of disease state (old/new, dynamic/static, pathophysiology)
- 3- Advice on prognosis and management based on tests results and disease detected.
- 4- Longitudinal monitoring of disease with multiple studies (Mallik, 2005).

AIM OF THE WORK

The aim of this work was to assess the normal values of motor nerve conduction velocity of ulnar and peroneal nerves in normal, healthy Egyptian infants and children in relation to age.

ANATOMY &EMBRYOLOGY OF NERVOUS SYSTEM

Development of nervous system

The nervous system is derived from the ectoderm which is the outermost tissue layer of the embryo. In the third week of development the neuroectoderm appears and forms the neural plate along the dorsal side of the embryo. This neural plate is the source of the majority of neurons and glial cells in the mature human. A groove forms in the neural plate and, by week four of development, the neural plate wraps in on itself to make neural tube (Saladin, 2011).

The inner portion of the neural plate along the midline is destined to become the <u>central nervous system</u> (CNS), the outer portion becomes the <u>peripheral nervous system</u> (PNS). As development proceeds, a fold called the <u>neural groove</u> appears along the midline. This fold deepens, and then closes up at the top. At this point the future CNS appears as a cylindrical structure called the <u>neural tube</u>, whereas the future PNS appears as two strips of tissue called the <u>neural crest</u>, runnin lengthwise above the neural tube. The sequence of stages from neural plate to neural tube and neural crest is known as <u>neurulation</u> (Sanes, 2005).

The ventral part of the neural tube is called the <u>basal plate</u>; the dorsal part is called the <u>alar plate</u>. The hollow interior is called the <u>neural canal</u>. By the end of the fourth week of gestation, the open ends of the neural tube, called the neuropores, is close off (**Gruener**, **2007**).

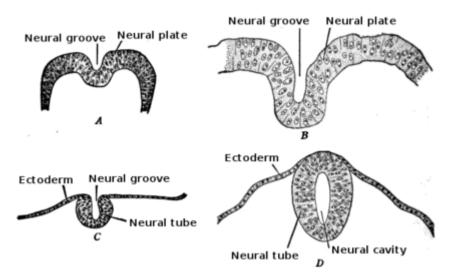


Figure (1): Development of nervous system (Sanes, 2005)

Neurulation in the normal human embryo.

The stages below refer to specific Carneigie stages of development.

- **Stage 8** (about 18 postovulatory days) neural groove and folds are first seen
- Stage 9 the three main divisions of the brain, which are not cerebral vesicles, can be distinguished while the neural groove is still completely open.
- Stage 10 (two days later) neural folds begin to fuse near the junction between brain and spinal cord, when neural crest cells are arising mainly from the neural ectoderm
- Stage 11 (about 24 days) the rostral (or cephalic) neuropore closes within a few hours; closure is bidirectional, it takes place from the dorsal and terminal lips and may occur in several areas simultaneously. The two lips, however, behave differently.
- Stage 12 (about 26 days) The caudal neuropore takes a day to close

- o the level of final closure is approximately at future somitic pair 31
- o corresponds to the level of sacral vertebra 2
- Stage 13 (4 weeks) the neural tube is normally completely closed

Secondary neurulation begins at stage 12 - is the differentiation of the caudal part of the neural tube from the caudal eminence (or end-bud) without the intermediate phase of a neural plate (**O'Rahilly**, 1994).

Anatomy of nervous system

The nervous system of human is divided into the central nervous system (CNS) and peripheral nervous system (PNS) (Kandel, 2000).

In the central nervous system, the <u>brain</u> and spinal cord are the main centers where correlation and integration of nervous information occur. Both the brain and spinal cord are covered with a system of membranes, called <u>meninges</u>, and are suspended in the cerebrospinal fluid; they are further protected by the bones of the skull and the vertebral column (**Gest**, **2013**).

The <u>peripheral nervous system</u> (PNS) is a collective term for the nervous system structures that do not lie within the CNS (Gest, 2013).